Выпарной аппарат с принудительной циркуляцией для алюминатных растворов

 

Использование: при разработке оборудования для производства глинозема и содопродуктов, а именно выпарных аппаратов с индивидуальной циркуляцией. Сущность изобретения: аппарат состоит из пульповой камеры, циркуляционной трубы с восходящим потоком, опущенной до расстояния 1-4 диаметра трубы от днища, греющих камер восходящего и нисходящего потоков, циркуляционного насоса, трубы вскипания и сепаратора. За счет совмещения циркуляции пульпы без корок через греющие трубки камеры с нисходящим потоком с циркуляцией сгущенных обвалившихся корок через размалывающий их циркуляционный насос, а также осуществления сепарации кристаллов в пульповой камере за счет центробежных усилий и восходящего потока аппарат позволяет исключить полное зарастание греющих трубок нисходящего потока, снизить удельный расход электроэнергии в 1,8-2 раза и капитальные расходы на сооружение. 2 ил.

Изобретение относится к оборудованию для производства глинозема и содопродуктов, конкретно к выпарным аппаратам с индивидуальной циркуляцией для упарки алюминатных растворов с кристаллизацией солей (соды, сульфатов, поташа).

Известны выпарные аппараты с принудительной циркуляцией упаривающих алюминатные растворы с кристаллизацией соды и сульфатов [1] Эти аппараты состоят из трубчатой греющей камеры, сепаратора с пульповой камерой и циркуляционного насоса, соединенного с трубами, с днищем пульповой камерой и трубчатой греющей камерой.

Недостатками этих аппаратов являются: ограниченность единичной мощности аппаратов производительностью пульпы в греющих трубах 2,4-2,8 м/с; большой расход электроэнергии для обеспечения циркуляции пульпы; невозможность осуществления значительного естественного циркуляционного напора из-за незначительного нагрева пульпы при в 2-3 раза большей скорости пульпы в трубах, чем в аппаратах с естественной циркуляцией.

Наиболее близким к предлагаемому является выпарной аппарат [2] в котором греющие трубки нисходящего и восходящего токов скомпонованы в две трубчатые греющие камеры и подсоединены верхними концами к днищу пульповой камеры. Трубы вскипания пульпы расположены внутри пульповой камеры. Слив пульпы осуществлен через дополнительный центробежный сгуститель для отбора более крупных кристаллов, с осуществлением закрутки потока за счет снижения скорости циркуляции пульпы через греющие трубки, что достигается установкой диафрагмы в циркуляционную трубу перед камерой для нисходящего потока.

Недостатками аппарата являются: подсоединение греющей камеры с трубками нисходящего хода к днищу пульповой камеры, в результате чего она выполняет роль фильтра для улавливания корок, постоянно отваливающихся со стенок сепаратора, что приводит к зарастанию в первую очередь греющих трубок нисходящего хода, а также и к усилению зарастающих греющих трубок второй камеры с трубками восходящего хода из-за снижения скорости циркуляции в результате увеличения сопротивления циркуляционного контура; невозможность увеличения полезного объема пульповой камеры для снижения пересыщения раствора опусканием ниже верхних частей греющих камер из-за присоединения их к днищу камеры. Как показали последние исследования, увеличение объема циркулирующей пульпы значительно снижает зарастание греющих трубок и стенок аппарата с уменьшением скорости образования корок; установка диафрагмы в циркуляционную трубу перед греющей камерой для нисходящего потока снижает скорость циркуляции пульпы в греющих трубках и повышает их зарастание или требует установки более мощного циркуляционного насоса с повышением расходов электроэнергии.

Целью изобретения является обеспечение работоспособности выпарного аппарата с принудительной циркуляцией за счет исключения забивки трубок корками в греющей камере нисходящего потока, осуществление сепарации кристаллов в восходящие потоке пульпы непосредственно в пульповой камере аппарата с исключением затрат электроэнергии на организацию центробежной сепарации кристаллов в дополнительном сгустителе при аппарате-прототипе и сокращение капитальных затрат на строительство здания за счет сокращения высоты аппарата, опусканием пульповой камеры ниже верхних частей греющих камер.

Цель достигается тем, что в выпарном аппарате с принудительной циркуляцией, включающем циркуляционный насос, две греющие трубчатые камеры, расположенные на всасе и нагнетании насоса, трубы вскипания пульповой камеры с днищем и сепаратора, греющие камеры соединены трубами с верхней частью пульповой камеры, причем трубопровод подачи пульпы в греющую камеру перед насосом опущен в пульповую камеру до расстояния 1-4 диаметра трубопровода от днища, а днище соединено трубопроводами с циркуляционным насосом.

Сущность изобретения заключается в удалении тонких отваливающихся от стенок корок из потока на греющую камеру с нисходящим потоком за счет отсоединения камеры от днища и в размоле непрочных корок с помощью циркуляционного насоса, а также в осуществлении сепарации кристаллов в восходящем потоке над днищем пульповой камеры и компоновке аппарата, позволяющей за счет присоединения греющих камер в верхней части пульповой камеры увеличивать полезный объем пульповой камеры для снятия аппарата (подсоединение камер к днищу в прототипе не позволяет опускать пульповую камеру).

На фиг.1 изображен предлагаемый выпарной аппарат; на фиг.2 разрез А-А на фиг.1.

Выпарной аппарат содержит пульповую камеру 1 с днищем, преимущественно коническим 2, циркуляционную трубу 3, расположенную внутри пульповой камеры на расстоянии в пределах 1-4 от днища 2, греющую камеру с нисходящим ходом пульпы в греющих трубках 4, трубу отвода готовой пульпы 5 из днища 2, циркуляционный насос 6, греющую камеру восходящего потока 7, трубу вскипания с направляющими лопатками 8, сепаратор 9, циркуляционную трубу 10 для циркуляции корок через насос 6 со штуцером подачи исходного раствора 11.

Аппарат работает следующим образом: пульпа из пульповой камеры 1 с коническим днищем 2 по циркуляционной трубе 3 поступает в греющую камеру с трубками нисходящего потока 4.

Во время поворота пульпы перед входом в трубу 3 на кристаллы, под действием восходящего потока раствора мелкие кристаллы увлекаются вверх в трубу 3, а более тяжелые под собственным весом оседают в конус и выводятся с готовой пульпой по трубе 5. В зависимости от расстояния трубы 3 от днища может регулироваться гранулометрический состав выводимой пульпы. Уменьшение расстояния ниже 1 диаметра трубы 3 от конца до днища нежелательно из-за увеличения сопротивления и снижения скорости циркуляции пульпы, а увеличение расстояния более 4 диаметров начнет заметно снижать полезный объем пульпы с перемешиванием за счет циркуляции (перемешивание пульпы интенсифицирует процесс снятия пересыщения раствора, необходимое для снижения зарастания аппарата и улучшения кристаллизации осадка).

Далее пульпа после предварительного нагрева поступает на всас циркуляционного насоса 6 и от него в греющую камеру восходящего потока 7. После двойного нагрева, несмотря на большую скорость потока, пульпа на выходе из греющей камеры 7 получает достаточный перегрев для образования естественного напора в помощь насосу, при вскипании в трубе 8 за счет разности удельных весов столбов пульпы в пульповой камере и кипящей пульпе в трубе 8.

Тангенциальная врезка трубы вскипения 8 в пульповую камеру на границе с сепаратором 9 позволяет в верхней части камеры за счет большей скорости вращения пульпы и возникающих при этом центробежных сил осуществить отделение пара от пульпы при наименьшем брызгоуносне, чем в прототипе, и предварительно отсепарировать к стенке камеры 1 корки, комки и более крупные кристаллы осадка. По выполнении этой задачи дальнейшее вращение потока нежелательно, т.к. оно приводит к образованию воронки, снижающей скорость циркуляции пульпы.

Размещение циркуляционной трубы 3 внутри пульповой камеры и ниже ввода трубы вскипания позволяет затормозить вращение потока. Отвалившиеся корки, прижатые предварительно к стенке, опустятся с наибольшим расстоянием от входа в трубу 3 в конце днища и по циркуляционной трубе 10 вместе с исходным раствором поступают на насос 6. При прохождении корок через насос осуществляется разлом непрочных тонких корок и части крупных кристаллов. Диаметр циркуляционной трубы 10 обеспечивает прохождение наибольших корок, обычно не превышающих в ширину 100-120 мм. Подача обычно недогретого исходного раствора в начале трубы 10 через штуцер 11 позволяет в значительной мере заместить поток пульпы с крупными кристаллами на ненасыщенный исходный раствор, который исключает зарастание стенок трубы с обеспечением ее работоспособности при малом диаметре, частично снижает прочность тонких 1-3 мм корок за счет их растворения и в какой-то мере улучшает работу насоса 6 за счет снижения кавитации при подаче на него более холодного раствора.

В редких случаях значительно перегретого исходного раствора подачу его желательно осуществить в начале трубы вскипания 8, т.к. это увеличит естественный циркуляционный напор в помощь насосу.

Греющий пар поступает в верхнюю часть из нижней части. Вторичный пар отводится из сепаратора 9. Вывод готовой пульпы по трубе 5 с наиболее крупными кристаллами на уровне нижней кромки трубы вскипания 8 с разрывом струи за счет соединения с паровым пространством сепаратора 9 обеспечивает оптимальный уровень пульпы в пульповой камере 1.

Как показал поиск по источникам научно-технической информации - отличительными признаки заявленного решения являются: соединение греющих камер трубами с верхней частью пульповой камеры, с опусканием трубопровода подачи пульпы в греющую камеру перед насосом до расстояния 1-4 диаметра трубы от днища, а днище соединено трубопроводом с циркуляционным насосом.

На одном глиноземном заводе, как и на других заводах, использовались для упарки алюминатного раствора, после первой стадии упарки в концентрирующих батареях, выпарные аппараты с принудительной циркуляцией, состоящие из пульповой камеры одной греющей камеры восходящего потока циркуляционного насоса и сепаратора.

Аппарат промывался водой раз в сутки и раз в десять дней останавливался для размывки полностью забитых содой и сульфатами части греющих трубок с помощью резиновых шлангов. При поверхности нагрева аппарата 250 м2 был установлен циркуляционный насос с электродвигателем мощностью 250 кВт.

Попытка использования греющих трубок с нисходящим ходом с подсоединением к днищу пульповой камеры в несколько раз увеличило забивку корками греющих трубок, что резко ухудшило работу аппарата.

Подсоединение греющей камеры поверхностью нагрева 155 м2 к верхней части пульповой камеры с опусканием циркуляционной трубы внутри камеры до днища с установкой циркуляционной трубы от днища камеры до насоса в соответствии с прилагаемым чертежом заявки впервые полностью исключило полное зарастание греющих трубок нисходящего хода и трудоемкую длительную размывку их резиновыми шлангами.

Полученный дополнительный нагрев пульпы после греющей камеры с нисходящим ходом обеспечил получение естественного напора в трубе вскипания с компенсацией сопротивления дополнительной камеры, при этом удельный расход электроэнергии на 1 м2 поверхности нагрева сократился в 1,82 раза.

Коэффициент теплопередачи вырос на 20% и сокращены капитальные затраты на установку дополнительного выпарного аппарата вместе с зданием стоимостью около одного миллиона рублей.

Формула изобретения

Выпарной аппарат с принудительной циркуляцией для алюминатных растворов, включающий циркуляционный насос, две греющие трубчатые камеры, расположенные на всасывающей и нагнетательной линиях насоса, трубы вскипания пульпы, пульповую камеру с днищем и сепаратор, отличающийся тем, что греющие камеры соединены трубами с верхней частью пульповой камеры, причем трубопровод подачи пульпы в греющую камеру перед насосом опущен в пульповую камеру на расстояние 1 4 диаметра трубопровода от днища, а днище соединено трубопроводом с циркуляционным насосом.

РИСУНКИ

Рисунок 1, Рисунок 2

QZ4A - Регистрация изменений (дополнений) лицензионного договора на использование изобретения

Лицензиар(ы): Открытое акционерное общество "РУСАЛ Всероссийский алюминиево-магниевый институт"

Вид лицензии*: НИЛ

Лицензиат(ы): Закрытое акционерное общество "МЕТАХИМ"

Характер внесенных изменений (дополнений):Изменено наименование лицензиара. Лицензиар: Открытое акционерное общество "РУСАЛ Всероссийский алюминиево-магниевый институт". Изменения, не относящиеся к сведениям, приведенным в патенте

Дата и номер государственной регистрации договора, в который внесены изменения: 02.02.2005 № 20827

Извещение опубликовано: 27.03.2010        БИ: 09/2010

* ИЛ - исключительная лицензия НИЛ - неисключительная лицензия



 

Похожие патенты:

Изобретение относится к выпарной технике, а именно к многоступенчатым термическим дистилляционным опреснительным установкам, и может быть использовано для производства особо чистой воды в фармацевтической, биотехнической, электронной, химической и других отраслях промышленности

Изобретение относится к судовым опреснительным установкам

Изобретение относится к перегонному аппарату для испарения жидкости и последующей ее конденсации, аппарат содержит множество плоских, оболочкообразных элементов из тонкого пленочного материала, такого, как термопластичная пленка, размещенных один против другого, элементы служат теплообменниками между испаряющейся жидкостью, текущей вдоль наружных поверхностей элементов, и конденсирующимся паром, который направляется внутрь элементов, и компрессор для увеличения давления и температуры генерируемого пара, прежде чем он (пар) направляется внутрь элементов

Изобретение относится к области газовой промышленности и может быть использовано при получении товарного сжиженного газа
Изобретение относится к газовой и нефтяной промышленности и может быть использовано для получения стабильного газового конденсата

Изобретение относится к области химической технологии и может быть использовано в производстве концентрированной серной кислоты

Изобретение относится к энергетике, а более конкретно к вспомогательным системам парогенерирующей установки атомной электростанции, а также может быть использовано в выпарных установках для упаривания перегретых солесодержащих жидкостей в металлургической, химической и других отраслях промышленности

Изобретение относится к способу получения раствора и, в частности к способу получения раствора целлюлозы в N-оксиде третичного амина

Изобретение относится к ионной технологии и может быть использовано в медицине, машиностроении, на транспорте, в том числе речном и морском, в автомобильной промышленности, сельском хозяйстве, авиации, космической технике, металлургии, энергетике

Изобретение относится к способу извлечения твердых остатков, находящихся в суспензии или в растворе текучей среды, которая включает в себя быстроиспаряющиеся компоненты, в частности воду

Изобретение относится к высокодисперсному сыпучему анионному поверхностно-активному веществу для моющих и/или очистительных средств, которое имеет микропористую структуру без пылеобразующих долей, причем его насыпная плотность составляет минимум 150 г/л, а содержание в нем остаточной воды - максимум 20 мас

Изобретение относится к оборудованию для выпаривания жидкости и может быть использовано в сахарной и других отраслях промышленности

Изобретение относится к производству оборудования для химической, пищевой, медицинской и биотехнологий, в частности вакуум-выпарных установок
Наверх