Панель обшивки, подвергающаяся значительным тепловым нагрузкам от аэродинамического нагрева

 

Использование: в гиперзвуковых летательных аппаратах с активным охлаждением, в теплообменных и теплопередающих устройствах с промежуточным теплоносителем. Сущность изобретения: внутренняя поверхность внешней оболочки панели выполнена в виде капиллярно-пористой структуры с системой дополнительных пароотводных каналов, чередующихся с протоками распределения теплоносителя. Панель обшивки дополнена внутренней оболочкой, образующей с внешней оболочкой единый герметичный объем. Конструкция панели, включающая капиллярно-пористую структуру, обеспечивает высокую интенсивность отвода тепла от обшивки летательного аппарата при больших плотностях потоков. Подвод теплоносителя к теплонапряженным участкам летательного аппарата и возможность разделять жидкую фазу от парообразной без увеличения гидравлического сопротивления исключает возможность разрыва элементов системы отвода теплоносителя. 1 ил.

Изобретение относится к теплообменным и теплопередающим устройствам с промежуточным теплоносителем и предназначено для использования в качестве панели обшивки гиперзвукового летательного аппарата /ГЛА/ с активным охлаждением, обеспечивающим теплозащиту ГЛА.

Ближайшим аналогом является установка для охлаждения относительно тонких аэродинамических конструкций, подвергающихся значительным тепловым нагрузкам, содержащая капиллярно-пористый элемент, вмонтированный в переднюю часть ведущей кромки и открытый для набегающего воздушного потока. Газообразный хладагент из герметичного резервуара после прохождения через пористый элемент ведущей кромки поглощает тепло и движется в зону торможения навстречу набегающему воздушному потоку.

Аэродинамическое нагревание панели ослабляется в критической тормозной зоне. Дополнительное охлаждение обеспечивается тем, что из области линии торможения хладагент вдувается сзади вдоль поверхности ведущей кромки навстречу воздушному потоку. Известная система охлаждения является открытой. Пористый элемент обращен к набегающему воздушному потоку. Интенсивный теплоотвод от ведущей кромки обеспечивается испарением хладагента в атмосферу.

В известной конструкции необходим большой запас хладагента, рассчитанный на длительный полет. Это ограничивает возможность полета на большие расстояния и во времени. Кроме того, охлаждается только малая площадь кромки крыла, так как из-за соображений прочности конструкции нельзя использовать подобную конструкцию для охлаждения больших площадей обшивки.

Технической задачей, на решение которой направлено изобретение, является создание конструкции панели с активным охлаждением, позволяющей обеспечить достаточную интенсивность теплоотвода от больших площадей при повышенных плотностях тепловых потоков, с одновременным обеспечением прочности конструкции и длительности работы.

Задача решается тем, что панель содержит капиллярно-пористый элемент, расположенный в оболочке. Канал подачи теплоносителя соединен с коллектором подвода. Коллектор отвода теплоносителя, датчик и герметичный резервуар завершают конструкцию панели. Панель снабжена дополнительной внутренней оболочкой, которая с теплопроводной внешней оболочкой образует единый герметичный объем. Капиллярно-пористый элемент размещен на внутренней стороне внешней оболочки в герметичном объеме. Капиллярно-пористый элемент снабжен дополнительными каналами для отвода пара пароканалами, чередующимися с каналами подачи теплоносителя, которые также расположены в пористом элементе. При этом пароканалы через коллектор отвода соединены теплообменником, который подключен к резервуару /баку с топливом/ и к двигателю.

На чертеже изображена панель обшивки ГЛА. Она содержит внешнюю оболочку 1, протоки распределения теплоносителя 2 и коллекторы подвода 3 и отвода 4 теплоносителя. Входы протоков распределения 2 соединены с выходами коллектора подвода теплоносителя 3. При этом коллектор подвода 3 через автомат давления 5, а коллектор отвода 4 непосредственно связаны с теплообменником 6. Теплообменник 6 подсоединен к баку 7 с хладагентом и к двигателю 8. Внутренняя поверхность внешней оболочки 1 выполнена в виде капиллярно-пористой структуры 9 с системой дополнительных пароотводных каналов 10, чередующихся с протоками распределения 2. Панель обшивки ГЛА дополнительно снабжена внутренней оболочкой 11, которая образует с внешней оболочкой 1 замкнутый единый герметичный объем. При этом коллекторы подвода 3 и отвода 4 теплоносителя расположены во внутренней оболочке 11 панели. Каналы 10 соединены с коллектором 4.

Работа предлагаемой панели обшивки ГЛА с активным охлаждением заключается в следующем. Охлаждение обшивки обеспечивается в результате циркуляции теплоносителя, забирающего тепло от стенок обшивки и передающего его хладагенту. Теплоноситель в процессе циркуляции меняет свое состояние. Из теплообменника 6 теплоноситель в жидком виде через автомат давления 5, создающий давление прокачки, необходимое для перемещения теплоносителя, подается по коллектору 3 в протоки распределения 2. Под действием капиллярных сил теплоноситель поступает в капиллярно-пористую структуру 9. При воздействии тепловым потоком на обшивку планера ГЛА, соответствующим скорости полета, внешняя оболочка 1 обшивки разогревается, отдавая тепло теплоносителю в капиллярно-пористой структуре 9, вызывая кипение в зоне раздела обшивка - капиллярно-пористая структура. Из теплотехники известно, что при пузырьковом кипении /капиллярно-пористая структура не допускает перехода от пузырькового кипения к пленочному/ коэффициент теплоотдачи > 10103 Вт/м2 град. Паровая фракция через поры капиллярно-пористой структуры 9 поступает в пароотводные каналы 10, соединенные с коллектором отвода 4. При этом гидравлическое сопротивление суммируется из сопротивления капиллярно-пористой структуры 9 при прохождении пузырька через ее толщу /2 мм/, сопротивления пароотводных каналов 10 и коллектора отвода 4, что значительно меньше сопротивления, получаемого при прохождении жидкого теплоносителя по тем же каналам, как это было в прототипе. Уменьшение гидравлического сопротивления исключает возможность запирания или разрыва элементов системы отвода теплоносителя.

Изобретение обеспечивает высокую интенсивность отвода тепла от панели при больших плотностях тепловых потоков. Это достигается за счет того, что увеличивается поверхность, с которой производится теплосъем. Единая капиллярно-пористая структура обеспечивает подвод теплоносителя к теплонапряженным участкам поверхности и возможность отводить тепловые потоки с больших площадей.

Наличие дополнительной внутренней оболочки, которая с внешней образует единый герметичный объем, создает возможность иметь постоянную массу теплоносителя в теплообменнике, так как из пористого элемента теплоноситель не испаряется в атмосфере, как в прототипе, а, охладив поверхность, нагретый теплоноситель в виде пара возвращается в теплообменник.

Дополнительный эффект данного изобретения в том, что хладагент, в качестве которого используется двигательное топливо, поступая из резервуара /бака/ в теплообменник одновременно с теплоносителем /горячим паром/, нагревается, охлаждая теплоноситель, который подается обратно в капиллярно-пористый элемент.

Формула изобретения

Панель обшивки, подвергающаяся значительным тепловым нагрузкам от аэродинамического разогрева, содержащая расположенный в оболочке капиллярно-пористый элемент с каналом подачи хладагента, соединенным с коллектором подвода теплоносителя, коллектор отвода, датчик и герметичный резервуар с хладагентом, отличающаяся тем, что панель снабжена дополнительной внутренней оболочкой, которая с теплопроводной внешней оболочкой образует единый герметичный объем, причем капиллярно-пористый элемент размещен на внутренней стороне внешней оболочки герметичного объема и снабжен чередующимися с каналами подвода теплоносителя пароканалами, которые коллектором отвода соединены с теплообменником и вместе с коллектором подвода, соединенным через датчик с теплообменником, образуют замкнутую систему, при этом теплообменник соединен с резервуаром с хладагентом.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к теплотехнике, в частности к теплообменникам термосифонного типа, и может быть использовано для утилизации тепла, нагрева и охлаждения воздуха в установках вентиляции и кондиционирования воздуха

Изобретение относится к судостроению и может быть использовано при создании систем охлаждения энергетических установок судов, работающих в условиях высокой загрязненности забортной воды различными включениями, например, мусором, водорослями, илом, а также судов, плавающих в ледовых условиях при наличии большого количества ледяной крошки, например, на атомных или дизель-электрических ледоколах

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения тепловыделяющих приборов

Изобретение относится к энергетическим установкам с жидкометаллическим теплоносителем и может быть использовано в атомной энергетике и металлургии

Изобретение относится к технологическим процессам и устройствам, предназначенным для откачки паров воды из камер и может быть использовано для сушки овощей, фруктов, ягод, отходов птицеводческих и животноводческих хозяйств, а также для сушки шламов, сточных вод и т.д

Изобретение относится к теплотехнике и может быть использовано в аппаратах с промежуточным теплоносителем, преимущественно в котлах-утилизаторах, подогревателях жидкого топлива и других теплопередающих устройствах

Изобретение относится к области космической техники, а конкретнее к системам охлаждения космических энергоустановок

Изобретение относится к теплотехнике и может быть использовано в приборах и устройствах, работающих в открытом космосе

Изобретение относится к области космической техники

Изобретение относится к области космической техники

Изобретение относится к активным системам терморегулирвания /СТР/, преимущественно космических аппаратов, функционирующих на орбите
Наверх