Способ обработки воды

 

Использование: водоподготовка на теплоэлектростанциях, химкомбинатах и других предприятиях, имеющих обессоливающие установки. Сущность способа: предлагается при обессоливании воды на H-OH-ионитовых фильтрах регенерацию OH-анионитового фильтра производить исходной водой. 1 табл.

Изобретение относится к области водоподготовки и может быть использовано на теплоэлектростанциях, химкомбинатах и других предприятиях, имеющих обессоливающие установки.

Известен способ обработки воды, включающий пропускание ее через сильноосновной анионит в C1- форме [1] В соответствии с этим способом ионитовый фильтр, загруженный анионитом типа АВ-17, регенерируют поваренной солью, а затем фильтруют обрабатываемую воду. При пропускании обрабатываемой воды через анионит происходит замена анионов HCO-3 этой воды на CI-, т.е. снижается щелочность этой воды.

Щелочность обрабатываемой воды уменьшается без изменения солесодержания, что является недостатком способа.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ частичного обессоливания воды на H-OH-ионитовых фильтрах [2] В соответствии со способом H-катионитовый фильтр, загруженный катионообменным материалом, регенерируют раствором кислоты, а OH-анионитовый фильтр, загруженный слабоосновным анионитом типа АН-31, раствором щелочи. Обрабатываемую воду последовательно пропускают через отрегенерированные H-катионитовый и OH-анионитовый фильтры. На H-катионитовом фильтре происходит замена всех катионов обрабатываемой воды на H+, на OH-анионитовом фильтре анионов сильных кислот на OH-, т.е. осуществляется процесс обессоливания воды.

Недостатком способа является большой расход щелочи на регенерацию OH-анионитового фильтра.

В основу предлагаемого изобретения положена задача сокращения расхода технической щелочи на регенерацию OH-анионитового фильтра.

Поставленная задача решается тем, в предлагаемом способе обработка воды также производится на H-катионитовом и OH-анионитовом фильтрах. Технология H-катионирования воды при этом не изменяется.

Технология OH-анионирования отличается тем, что в режиме регенерации через OH-анионитовый фильтр пропускают исходную воду, содержащую анионы щелочности. При этом происходит процесс регенерации анионита, который может быть описан следующим образом: Таким образом в результате пропускания исходной воды анионит переходит в OH-форму. При этом из-за малой концентрации бикарбонатов в исходной воде практически полная регенерация анионита будет происходить только после пропускания достаточно большого количества этой воды. Поэтому на практике может оказаться целесообразным осуществлять частичную регенерацию OH-анионитового фильтра исходной водой с дополнительной регенерацией уменьшенным расходом едкого натра.

Через отрегенерированные H-катионитовый и OH-анионитовый фильтры в режиме обессоливания последовательно пропускают обрабатываемую воду.

Таким образом OH-анионитовый фильтр будет работать попеременно в режиме пропускания исходной воды и в режиме фильтрования H-катионированной воды.

Пример. Процесс обработки воды производился при использовании двух колонок диаметром 3 см, загруженных на высоту 2 м соответственно катионитом КУ-2-8 и анионитом АН-31. Колонка с катионитом была отрегенерирована 20 л 2% -ного раствора серной кислоты. Через колонку с анионитом пропускали исходную воду, содержащую, мг-экв/л: Ca2+=3, Mg2+=1, Na+=1, HCO-33, CI-=1, SO24-1. Затем производили фильтрование этой воды последовательно через колонку с катионитом и колонку с анионитом. На выходе колонки с катионитом контролировали кислотность, на выходе колонки с анионитом щелочность и общее солесодержание. Процесс фильтрования воды считался завершенным при резком изменении качества фильтрата, объясняемого исчерпанием обменной емкости ионообменного материала.

Было проведено несколько циклов регенерации и обработки воды на колонках, в том числе с регенерацией OH-анионитового фильтра одним едким натром, а также исходной водой и едким натром, пропускаемых последовательно. Для регенерации использовался 4%-ный NaOH.

Результаты экспериментов приведены в таблице.

Таким образом для достижения обменной емкости анионита 659-667 г-экв/м3 можно осуществлять его регенерацию исходной водой, исходной водой и едким натром, раствором едкого натра, что позволяет сделать вывод о возможности осуществления процесса по предлагаемой технологии.

Формула изобретения

Способ обработки воды, включающий пропускание ее через Н-катионитовый и ОН-анионитовый фильтры до их истощения и регенерацию фильтров, отличающийся тем, что регенерацию ОН-анионитового фильтра проводят исходной водой.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к теплоэнергетике и может быть использовано на теплоэлектроцентралях и отопительных котельнях

Изобретение относится к конструкции перегонных аппаратов непрерывного действия и может быть использовано для очистки жидкостей от растворенных в них солей и дисперсных частиц, например, для очистки питьевой воды, упаривания в паровом потоке, нагрева холодной воды, получения электролитов для аккумуляторов

Изобретение относится к способу извлечения цинка из отработанных технологических растворов, например, гальванических производств

Изобретение относится к способу извлечения цинка из отработанных технологических растворов, например, гальванических производств

Изобретение относится к очистке строчных вод от хрома и может быть использовано, в частности, на предприятиях кожевенной промышленности

Изобретение относится к очистке строчных вод от хрома и может быть использовано, в частности, на предприятиях кожевенной промышленности

Изобретение относится к устройствам для магнитной обработки жидкости и может быть использовано в тепловых двигателях, на автомобильном транспорте, в других системах охлаждения и нагревания

Изобретение относится к химической технологии, в частности к устройствам для электрохимической обработки воды, и может быть использовано для получения моющих и дезинфицирующих растворов

Изобретение относится к способу очистки потока, содержащего органические и/или неорганические примеси, включающему введение потока, подлежащего обработке, в реакционную зону, содержащую уплотненный слой активированного угля, к которому прикладывают электрические потенциал и подводят газообразный реагент, выбираемый из озона и водорода, при этом реагент используют в суб-стехиометрическом количестве, которое составляет менее 1 кг O3/кг ХПК в случае озона и менее чем 1 кг H2/кг ХПВ в случае водорода

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх