Способ получения гранулята хлорида калия

 

Использование: способ гранулирования материалов из расплавов может быть использован в химической промышленности, при производстве удобрений, создании высокоэкономичной технологии получения из расплава гранулята хлорида калия, обладающего высокой твердостью. Сущность: в исходный расплав хлорида калия вводят соль, кристаллизующуюся по ромбической структуре, в количестве не менее 0,02 от массы исходного расплава с последующим формованием отвердевающего расплава. Вводят, например, хлорид бария, хлорид кальция, сульфат калия. Выход годного гранулята 89 - 91 %. 1 табл.

Изобретение относится к способам гранулирования материалов из расплавов и может быть использовано в химической промышленности, при производстве минеральных удобрений.

Известен способ гранулирования расплавов диспергированием на калии с последующей кристаллизацией при охлаждении [1] Однако полученный известным способом гранулят хлорида калия обладает низкой прочностью гранул, наличием "раковин" и т. д. т. е. практически не отвечает требованиям, предъявляемым к товарной продукции.

В настоящее время одним из существенных условий, характеризующих качество товарного гранулята хлорида калия, является его твердость, оптимальная величина которой должна составлять менее 2 кг.

В случае получения гранулята хлорида калия описанным выше способом при транспортировке товарного продукта в контейнерах типа "big-bag" гранулят истирается в порошок, неизбежны потери, что дает основание делать вывод об экономической невыгодности процесса.

Известен способ получения гранулята хлорида калия из расплава, включающий формирование отвердевающего расплава, принятый в качестве прототипа [2] По известному способу расплав хлорида калия кристаллизуют в многоступенчатой ваккумкристаллизационнй установке с последующим прессованием порошковидного хлорида калия, дроблением прессованной плитки и рассеиванием с выделением товарной фракции.

Существенным недостатком известного способа также является низкая прочность получаемых гранул.

При использовании методов механического гранулирования давления порядка нескольких килограммов на квадратный сантиметр, развиваемого существующими прессами, оказывается недостаточным для того, чтобы придать соответствующую твердость гранулам. Для получения значительной твердости требуется дорогостоящее оборудование и процесс становится экономически невыгодным.

Изобретение направлено на решение задачи создания высокоэкономичной технологии получения из расплава гранулята хлорида калия, обладающего значительной твердостью.

Технический результат, который может быть получен при использовании изобретения заключается в повышении экономичности процесса за счет обеспечения возможности получения товарного гранулята с высокой твердостью.

Технический результат достигается тем, что в известном способе получения хлорида калия из расплава, включающем формирование отвердевающего расплава, согласно заявляемому способу перед формированием в исходный расплав вводят соль, кристаллизующуюся по ромбической структуре, в количестве не менее 0,02 от массы исходного расплава.

Сущность предлагаемого способа состоит в следующем.

Проведенные исследования позволили установить, что введение в исходный расплав хлорида калия соли, кристаллизирующейся по ромбической структуре неожиданно привело к повышению прочности получаемого гранулята.

Установлено, что хлористый калий при кристаллизации из расплава дает гранецентрированную кубическую решетку, сингония кубическая. Кристаллы хлористого калия характеризуются весьма совершенной спайностью, что обуславливает низкую прочность получаемых из расплава гранул. Поликристаллическая структура, образованная из однотипных кристаллов при охлаждении расплава, также не отличается высокой прочностью.

Введение в исходный расплав соли, кристаллизующейся по ромбической структуре, как показали эксперименты, позволяет модифицировать прочность поликристаллической структуры и тем самым увеличить прочность получаемых гранул.

Очевидно, образующаяся в этом случае эвтектическая смесь хлорида калия и указанной соли при затвердевании образует плотную микрокристаллическую структуру, заполняющую межкристаллитные швы и спаивающую относительно крупные кристаллы хлористого калия. Проведенные эксперименты подтвердили, что в случае введения в расплав солей, имеющих иную сингонию, например кубическую или гексагональную, необходимость прочности получаемого товарного гранулята не наблюдалось.

Так же опытным путем было установлено, что прочность гранул зависит от количества вводимой солевой добавки. Так, введение соли, отвечающей заявляемым требованиям, но количество которой составляет менее 0,02 от массы исходного расплава, не оказывает существенного влияния на прочность получаемого гранулята.

Пример 1. Реализация предлагаемого способа.

В полученный в электропечи расплав хлорида калия в количестве 1000 кг/ч вводят соль -сернокислый калий, кристаллизующийся по ромбической структуре в количестве 20 кг, т. е. 0,02 от массы исходного расплава (опыты 8 10 в таблице).

Выпускаемый из электропечи при температуре 800o расплав подают на валковый гранулятор. Полученный гранулят подвергался на прочность. С этой целью после отсчета мелочи целые гранулы крупностью +3 мм подвергались воздействию статической нагрузки величиной 5 кг. Показателем прочности являлся процентный выход целых, неразрушенных гранул. Выход годного гранулята в описываемом примере составлял 89 Пример 2. Реализация предлагаемого способа В расплав хлорида калия по примеру 1 вводят соль хлористый барий, кристаллизирующийся по ромбической структуре в количестве 20 кг (0,02 от массы исходного расплава) (опыт 5 в таблице).

Условия эксперимента аналогичны описанным в примере 1. Выход полного гранулята составил 91 Пример 3. Реализация предлагаемого способа.

В расплав хлорида калия по примеру 1 вводят соль хлористый кальций, кристаллизующийся по ромбической структуре в количестве 20 кг (0,02 от массы исходного расплава) (опыт 6 в таблице). Условия эксперимента аналогичны описанным в примере 1. Выход годного гранулята составил 90 Пример 4. В расплав хлорида калия по примеру 1 вводят соль иодистый калий, кристаллизующийся по кубической структуре в количестве 20 кг (0,02 от массы исходного расплава) (опыт 2 в таблице).

Условия эксперимента аналогичны описанным в примере 1. Выход годного гранулята составил 50 Пример 5. В расплав хлорида калия по примеру 1 вводят соль фтористый натрий, кристаллизующийся по кубической структуре в количестве 20 кг (0,02 от массы исходного расплава) (опыт 3 в таблице).

Условия эксперимента аналогичны описанным в примере 1. Выход годного гранулята составил 48 Пример 6. В расплав хлорида калия по примеру 1 вводят соль хлористый магний, кристаллизирующийся по гексагональной структуре в количестве 20 кг (0,02 от массы исходного расплава) (опыт 4 в таблице).

Условия эксперимента аналогичны описанным в примере 1. Выход годного гранулята составил 45 Результаты экспериментальных исследований приведены в таблице.

Как следует из полученных, данных оптимальные с точки зрения выхода обладающего высокой прочностью гранулята на уровне 89 90 результаты при введении в исходный расплав хлорида калия добавки в виде соли, кристаллизирующейся по ромбической структуре в количестве 0,02 от массы исходного расплава.

Таким образом, предлагаемый способ позволяет успешно решить задачу создания экономичной технологии получения из расплава товарного гранулята хлорида калия, обладающего значительной прочностью.


Формула изобретения

Способ получения гранулята хлорида калия из расплава, включающий формирование отвердевающего расплава, отличающийся тем, что перед формированием в исходный расплав вводят соль, кристаллизующуюся по ромбической структуре, в количестве не менее 0,02 от веса исходного расплава.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технологии получения гранулированных удобрений, включающей обработку пылевидных фракций связующим и последующее прессование совместно с крупными классами

Изобретение относится к производству гранулированного хлористого калия включающего его кондиционирование с целью улучшения его физико-механических свойств

Изобретение относится к способу получения хлорид и/или сульфат содержащих NPK-удобрений (полное удобрение), обладающих пониженной склонностью к вспучиванию и слеживанию

Изобретение относится к способу получения удобрения из алюминиевого скрапа, а также к способам удобрения почвы с использованием отработанного флюса из процесса восстановления алюминия

Изобретение относится к технологии получения неслеживающегося хлористого калия и может быть использовано при производстве калийных удобрений и разработке технологии, уменьшающей затраты на производство и улучшающей потребительские свойства готовой продукции

Изобретение относится к технологии получения мелкозернистого хлористого калия и способствует снижению пылимости продукта

Изобретение относится к получению гранулированного удобрения с улучшенными физико - механическими свойствами за счет кондиционирования специальными реагентами

Изобретение относится к способу получения комплексных гранулированных фосфорно-калийных удобрений для повышения прочности гранул, увеличения выхода целевых фракций при гранулировании и снижения энергозатрат

Изобретение относится к способам предотвращения образования пыли при обработке гранулята, в частности гранулированных калийных удобрений

Изобретение относится к неорганической химии, в частности к получению высокопористых углеродных изделий, обладающих высокой сорбционной способностью и достаточной механической прочностью, необходимой для эксплуатации

Изобретение относится к нефтехимии и нефтепереработке, точнее, к производству катализаторов гидроочистки нефтяных фракций

Изобретение относится к области катализа, в частности может быть использовано для очистки ымовых газов ТЭС от SO2

Изобретение относится к области производства гетерогенных катализаторов жидкофазного окисления сернистых соединений (диоксиды серы, свероводорода, меркаптанов) и может быть использовано для очистки газовых выбросов и сточных вод энергетической, нефтеперерабатывающей, нефтехимической, химической и целлюлозно-бумажной отраслей промышленности

Изобретение относится к производству гетерогенных катализаторов жидкофазного окисления сернистых соединений (диоксид серы, сероводород, меркаптаны) и может быть использовано для очистки газовых выбросов и сточных вод энергетической, нефтеперерабатывающей, нефтехимической, химической и целлюлозно-бумажной отраслей промышленности

Изобретение относится к производству гетерогенных катализаторов жидкофазного окисления сернистых соединений (диоксид серы, сероводород, меркаптаны) и может быть использовано для очистки газовых выбросов и сточных вод энергетической, нефтеперерабатывающей, нефтехимической, химической и целлюлозно-бумажной отраслей промышленности
Изобретение относится к нефтехимической отрасли, в частности, к катализаторам для получения формальдегида окислением природного и попутного нефтяного газа
Изобретение относится к нефтехимической отрасли, в частности, к катализаторам для получения формальдегида окислением природного и попутного нефтяного газа
Изобретение относится к нефтехимической отрасли, в частности, к катализаторам для получения формальдегида окислением природного и попутного нефтяного газа

Изобретение относится к технической физике и может быть использовано в различных отраслях техники, например, в противопожарной технике, в технике создания аэрозольных упаковок и в любых других, в которых возникает необходимость обогащения газом окружающей среды не химическим путем

Изобретение относится к алюмоникелевым катализаторам, которые могут быть использованы для очистки газов от оксидов азота
Наверх