Газовый лазер

 

Использование: изобретение относится к лазерной технике. Сущность: конструктивно простой и компактный имеющий газодинамический контур Т-образной формы, электроразрядный газовый лазер обладает повышенным КПД, который достигается тем, что характерное время оборота рабочего газа в газодинамическом контуре меньше характерного времени релаксации энергии возбуждения рабочей молекулы лазера, например СО-лазер, что снижает потребление электроэнергии в объеме газового разряда и повышает КПД до 2 раз в сравнении с известными газовыми лазерами. 1 ил.

Изобретение относится к лазерной технике, а именно к конструкции мощных газовых лазеров.

Известен прокачной газовый лазер с замкнутым газодинамическим контуром [1] в котором рабочий газ циркулирует в контуре, образованном областью возбуждения, двумя холодильниками и двумя вентиляторами.

Наиболее близким техническим решением, принятым за прототип, является газовый лазер [2] содержащий резонатор, газоразрядную камеру, криогенный теплообменник и вентилятор, включенные в газодинамический контур.

Предлагаемый газовый лазер отличается от известных простотой и компактностью конструктивных решений, а главное повышенным КПД за счет того, что время оборота газа в газодинамическом контуре меньше времени релаксации энергии возбуждения рабочей молекулы (в данном случае молекулы СО), а следовательно, для газового разряда требуется меньшее количество электроэнергии.

Этот эффект достигается благодаря тому, что предлагаемый газовый лазер снабжен газодинамической трубой, в которой размещена газоразрядная камера, выполненная в виде газоразрядных трубок, а газодинамический контур имеет Т-образную форму, горизонтальную часть которого образуют газодинамическая труба с газоразрядной камерой и зеркала оптического резонатора, размещенные на ее торцах, а вертикальную часть образуют криогеннный теплообменник, выполненный в виде полового цилиндра с вентилятором в его свободном торце, и в центральную полость которого помещен канал подачи рабочего газа на вход вентилятора, причем постоянная времени оборота газа об. в газодинамическом контуре равна об. = 0,1 - 0,5 рел. где рел. время релаксации энергии возбуждения рабочей молекулы на чертеже приведена конструктивная схема газового лазера.

Конструкция газового лазера имеет Т-образную форму, горизонтальную часть которого образует газодинамическая труба 1, внутри которой размещены трубки газоразрядной камеры 2. С обоих концов газоразрядной камеры 2 установлены зеркала оптического резонатора 3, причем одно из них полупрозрачное для лазерного излучения. Вертикальная часть состоит из цилиндрического криогенного теплообменника 4, центральную полость которого образует труба 5, соединенная одним концом с газоразрядной камерой 2, другой конец трубы соединен с входом вентилятора 6. Теплообменник 4 потребляет хладагент, например жидкий азот, от внешнего источника и обеспечивает охлаждение рабочего газа, подаваемого по газодинамической трубе 1 в газоразрядную камеру 2, где происходит его накачка в газовом разряде (см. чертеж).

Газовый лазер функционирует следующим образом.

Газадинамический контур наполняется рабочей смесью, содержащей молекулу с характерным временем релаксации энергии возбуждения рел. в криогенный теплообменник подается хладагент. Затем включается вентилятор 6, а к газоразрядным трубкам газоразрядной камеры 2 подается электроэнергия. В результате возникает газовый разряд. Газодинамический контур обеспечивает непрерывную смену газа в газоразрядных трубках. Оптический резонатор, образованный зеркалами 3, формирует лазерное излучение, выходящее вовне через полупрозрачное зеркало.

В газоразрядной трубке происходит трубке происходит возбуждение рабочей молекулы (например, СО). Часть энергии возбуждения излучается, а оставшаяся часть релаксирует в тепло, но так как время релаксации больше времени оборота газа в газодинамическом контуре об. то к моменту полного оборота газа рабочие молекулы сохраняют часть энергии возбуждения, а следовательно, для накачки требуется меньшее количество электроэнергии, что повышает КПД лазера.

Предлагаемая конструкция обеспечивает выполнение требования об. = 0,1 - 0,5 рел., где об постоянная времени оборота газа в газодинамическом контуре; рел. время релаксации энергии возбуждения рабочей молекулы.

Данное предложение позволяет повысить КПД по сравнению известными до двух раз.

Формула изобретения

Газовый лазер, содержащий оптический резонатор, газоразрядную камеру, криогенный теплообменник, включенный в газодинамический контур, отличающийся тем, что он снабжен газодинамической трубой, в которой размещена газоразрядная камера, выполненная в виде газоразрядных трубок, а газодинамический контур имеет Т-образную форму, горизонтальную часть которого образуют газодинамическая труба с газоразрядной камерой и зеркала оптического резонатора, размещенные на ее торцах, а вертикальную часть образуют криогенный теплообменник, выполненный в виде полого цилиндра с вентилятором в его свободном торце и в центральную полость которого помещен канал подачи газа на вход вентилятора, причем постоянная времени оборота газа об. в газодинамическом контуре равна об. = 0,1 - 0,5 рел., где рел.- время релаксации энергии возбуждения рабочей молекулы.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к лазерной технике, а более конкретно, к лазерам с волоконным выводом излучения и активным элементом из кристаллических или аморфных твердых веществ, в которых применяется оптическая накачка, и может быть использована в медицинских установках для резки, коагуляции и нагрева биотканей лазерным излучением

Изобретение относится к области квантовой электроники и может быть использовано для создания импульсных газовых лазеров

Изобретение относится к приборам квантовой электроники, а именно к мощным твердотельным лазерам

Изобретение относится к лазерной технике

Изобретение относится к лазерам, т.е.к квантовым устройствам для генерирования стимулированного излучения, в частности к газовым лазерам, а более точно к газовым лазерам с использованием емкостного возбуждения активной среды

Изобретение относится к квантовой электронике, а именно к устройству электродной системы импульсно-периодических лазеров с возбуждением объемным самостоятельным разрядом (ОСР) и может быть использовано в решении технологических и лазерно-химических задач

Изобретение относится к лазерной технике, а точнее к блокам генерации излучения лазера с поперечной прокачкой газового потока

Изобретение относится к лазерной технике, а именно к конструкциям твердотельных лазеров

Изобретение относится к области квантовой электроники

Изобретение относится к квантовой электронике, а именно к устройству формирования объемного самостоятельного разряда (ОСР) для накачки импульсно-периодических лазеров и может быть использовано в решении технологических и лазерно-химических задач

Изобретение относится к квантовой электронике и может быть применено в качестве плазмолистовых электродов в щелевых разрядных камерах, открывающих перспективное направление в создании нового поколения мощных газоразрядных лазеров без быстрой прокачки рабочей смеси

Изобретение относится к области оптоэлектроники и интегральной оптики, в частности к способу получения направленного когерентного излучения света устройствами микронного размера

Изобретение относится к области квантовой электроники и может использоваться при создании мощных и сверхмощных газовых лазеров непрерывного и импульсно-периодического действия

Изобретение относится к лазерному оборудованию, а точнее к блокам генерации излучения многоканальных лазеров
Наверх