Способ получения изделий из карбида хрома

 

Использование: изобретение относится к получению карбидных материалов. Сущность изобретения: способ состоит в том, что синтез карбида хрома осуществляется непосредственно в объеме заготовки будущей детали. Реализация предлагаемого способа по сравнению с прототипом обеспечивает получение карбида не просто в виде порошка, но и в виде изделий определенной формы. Кроме того, способ позволяет получать изделия различного состава (вид карбида, карбид-углерод) и различной пористости (в известных пределах). 3 з.п. ф-лы, 1 табл.

Изобретение относится к получению карбидных материалов.

Основными методами получения тугоплавких карбидов являются синтез из элементов или восстановление оксидов углеродом, например, Однако высокие температуры синтеза 1500 1550oC, как правило, не способствуют формированию карбидов в дисперсной форме.

Карбид хрома в виде порошка и при более низких температурах синтеза может быть получен при использовании углеродной составляющей, образующейся при разложении природного газа или других углеводородов. В качестве прототипа выбран способ, заключающийся в науглероживании измельченных окислов металлов при обработке природным газом или другими углеводородами [2] Обработку ведут при 800 1200oC в реакторе с псевдоожиженным слоем окиси металла, сквозь которую подают углеводород. Окись металла начинает активно науглероживаться. При этом частицы окиси начинают равномерно покрываться пиролитическим углеродом (ПУ). Скорость отложения углеводорода на окиси зависит от температуры и расхода газа. Степень науглероживания зависит от длительности процесса. Отложившийся ПУ имеет тонкодисперсное строение, высокую реакционную активность, спектральную чистоту.

Недостатками способа-прототипа является то, что данный способ является только подготовкой окислов редких металлов к карбидизации; синтезированный в дальнейшем из этого материала карбид может быть получен только в виде порошка.

Задачей изобретения является получение карбида хрома в виде готовых изделий.

Поставленная цель достигается за счет того, что синтез карбида происходит непосредственно в объеме заготовки будущей детали.

Сущность изобретения заключается в следующем.

Из порошка оксида хрома (III) на временном связующем формируют заготовку, максимально приближенную по форме к требуемой детали. Полученную пористую заготовку, пористость которой может варьироваться в пределах 35 65% обрабатывают в среде углеводородов или их смесей при температуре их разложения до изменения массы заготовки на 20 34% от начальной. При этом в порах заготовки на поверхности частиц исходного оксида хрома протекает химическая гетерогенная реакция образования углеродного слоя. Формируемый слой представляет собой прочно связанный с основой (поверхностью частиц) графитоподобный углерод.

Полученный на этой стадии полуфабрикат изделия является реакционно-активной системой с равномерным распределением компонентов, которые, кроме того, приведены в непосредственный контакт с весьма развитой поверхностью их раздела, что облегчает протеканию дальнейшей реакции их химического взаимодействия.

Полуфабрикат изделия имеет ту же форму и размеры, что и заготовка. При этом он обладает большей прочностью и может быть подвергнут механической обработке (например, сверлению) для формирования поверхностей, которые невозможно получить при формировании заготовки. Синтез карбида осуществляется при 1150 1250oC путем высокотемпературной обработки полуфабриката в вакууме или среде инертного газа.

Пористость заготовки задается в зависимости от требований, предъявляемых к создаваемой детали: состав (вид карбида); пористость детали.

Формовать заготовки с начальной пористостью меньше 42% нецелесообразно, т.к. это не позволит синтезировать карбид во всем объеме детали.

Формовать заготовки с начальной пористостью больше 65% не имеет смысла, т.к. даже при образовании карбида пористость детали будет больше 75% и деталь будет иметь очень низкую прочность.

Увеличение массы заготовки более чем на 34% не всегда целесообразно, т. к. после протекания реакции карбидообразования в порах детали останется избыточный углерод, что часто является нежелательным. Увеличение массы заготовки менее чем на 20% не обеспечивает возможности получения из нее конечной детали.

Взаимное сочетание начальной пористости заготовки и количества вводимого в нее углерода позволяет получать детали с различной пористостью.

Пример 1. Из порошка оксида хрома (III) формуют заготовку детали, например, диска. Деталь помещают в реактор, подают туда природный газ и выдерживают при температуре его разложения. После этого реактор охлаждают. Полученный полуфабрикат помещают в вакуумную печь, нагревают до 1200oC и выдерживают 20 мин. После этого печь охлаждают и деталь извлекают. Таким образом получен диск из пористого карбида хрома.

Примеры 2 и 3. Осуществляются аналогично примеру 1 (см. таблицу).

Таким образом, реализация предлагаемого способа по сравнению с известным обеспечивает получение карбида не просто в виде порошка, но и в виде изделий определенной формы. Кроме того, способ позволяет получать изделия различного состава (вид карбида, карбид-углерод) и различной пористости (в известных пределах).

Литература 1. Косолапова Т.Я. Карбиды. М. Металлургия, 1968. 299 с.

2. "Способ подготовки окислов редких металлов к карбидизации" (Лысцов А. И. Галицкий Н.В. Васютинский Н.А. /Описание изобретения к авторскому свидетельству. Бюллетень N 15, опубликовано 26.04.1968.

Формула изобретения

1. Способ получения изделий из карбида хрома, синтезированного из оксида хрома (III) и пиролитического углерода, включающий термообработку оксида хрома в среде газообразных углеводородов или их смесей при температуре выше температуры их разложения, отличающийся тем, что предварительно из порошка оксида хрома формуют заготовку изделия, после чего ее термообрабатывают до увеличения массы на 20 34% от начальной, а синтез карбида осуществляют непосредственно в объеме заготовки путем ее термообработки.

2. Способ по п.1, отличающийся тем, что синтез карбида осуществляют при 1150 1250oС.

3. Способ по пп.1 и 2, отличающийся тем, что синтез карбида осуществляют в вакууме.

4. Способ по пп.1 3, отличающийся тем, что синтех карбида осуществляют в атмосфере инертного газа.

РИСУНКИ

Рисунок 1

Другие изменения, связанные с зарегистрированными изобретениями

Изменения:Публикацию о досрочном прекращении действия патента на изобретение считать недействительной

Номер и год публикации бюллетеня: 35-2004

Извещение опубликовано: 27.03.2005        БИ: 09/2005



 

Похожие патенты:

Изобретение относится к огнеупорной промышленности, в частности к технике изготовления и эксплуатации карбидкремнийсодержащих огнеупоров, и может быть использовано при изготовлении фасонных огнеупорных изделий, в том числе плавильных тиглей, а также сопл, насадок, защитных кожухов, литейных воронок и других, работающих в контакте с расплавами металлов на основе никеля или кобальта

Изобретение относится к неорганической химии, в частности к огнеупорным бескислородным керамическим материалам, и может быть использовано для получения огнеупорного конструкционного материала на основе карбида кремния и кремния

Изобретение относится к металлообрабатывающей и химической промышленности и может быть использовано в металлообрабатывающей и химической промышленности в качестве абразивов, наплавочных смесей, режущего инструмента, на основе карбидов, нитридов и карбонитридов титана, по своим физико-механическим характеристикам является ведущими средами других традиционно используемых соединений (корунд и карбид вольфрама)
Изобретение относится к области получения керамических изделий, содержащих карбид кремния, методом силицирующего обжига
Изобретение относится к области получения керамических изделий, содержащих карбид кремния, методом силицирующего обжига

Изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды и может быть использовано в химической, нефтяной и металлургической промышленности, а также в авиатехнике для создания изделий и элементов конструкций, подвергающихся воздействию агрессивных сред, в частности футеровки камер нейтрализации экологически вредных веществ, форсунок, тиглей, деталей тепловых двигателей, высокотемпературных турбин, испытывающих значительные механические нагрузки при эксплуатации
Изобретение относится к области получения композиционных материалов

Изобретение относится к способам получения монокарбидов тугоплавких металлов, которые могут быть использованы в виде изделий повышенной химической чистоты, например в качестве мишеней для нанесения карбидных покрытий магнетронным напылением

Изобретение относится к металлургическому и огнеупорному производству, в частности к составам масс для изготовления огнеупорных изделий, преимущественно графитосодержащих тиглей для плавки и раздачи цветных металлов и сплавов, муфелей для получения окиси цинка, подставок и надставок тиглей и другой аналогичной продукции

Изобретение относится к способу получения тугоплавкого соединения титана, которое может быть использовано в металлообрабатывающей и химической промышленности

Изобретение относится к неорганическим материалам и может быть использовано в огнеупорной промышленности, металлургии, двигателестроении, энергетике, в частности, для изделий, работающих при высоких температурах и нагрузках на воздухе или в контакте с агрессивными средами, а также при ударных нагрузках

Изобретение относится к области порошковой металлургии и может быть использовано для получения особо твердых и износостойких материалов, используемых в качестве элементов бронезащиты и индивидуальной защиты от стрелкового оружия, для изготовления сопл пескоструйных аппаратов, работающих в условиях интенсивного абразивного изнашивания и др

Изобретение относится к технологии изготовления керамических изделий в системе Al2O3 - Sic-C и может быть использовано в огнеупорной промышленности
Изобретение относится к композиционным керамическим материалам, проявляющим диэлектрические свойства и способность поглощения мощности микроволнового излучения

Изобретение относится к области микроволновой техники и может быть использовано в качестве конструктивного элемента микроволновых муфельных печей, используемых для сушки, спекания и плавления различных керамических материалов и металлов, а также синтеза неорганических соединений

Изобретение относится к получению тугоплавких композиционных изделий заданной формы, практически беспористых, и может быть использовано в области создания композиционных материалов повышенной размеростабильности, эрозионно стойких электротехнических материалов для работы на воздухе и т.п

Изобретение относится к области порошковой металлургии и может быть использовано для получения особо твердых, износостойких, с высокой прочностью керамических материалов, используемых в качестве элементов бронезащиты, средств индивидуальной защиты от стрелкового оружия, для изготовления пескоструйных аппаратов, работающих в условиях интенсивного абразивного изнашивания, для защиты от нейтронного излучения в стенке атомного реактора и др
Изобретение относится к области производства керамических материалов и касается способа получения спекаемых полуфабрикатов, которые после спекания могут применяться, например, в качестве составляющих керамических материалов
Наверх