Цветной визуализатор полей оптической плотности

 

Использование: для цветной визуализации в реальном времени градиента двумерного распределения коэффициента преломления в газовых и конденсированных средах. Сущность изобретения: в цветном визуализаторе полей оптической плотности, содержащем последовательно расположенные формирующий объектив с бихроматическим щелевым источником в передней фурье-плоскости, фурье-сопряженным с формирующим приемным объективом, в задней фурье-плоскости которого помещен биквадрантный фильтр Фуко-Гильберта, согласованный с щелевым источником, видеокамеру с подключенными к ней системой обработки изображения и видеорегистрирующим устройством, дополнительно введены: второй бихроматический щелевой источник, ортогональный первому и оптически сопряженный с биквадрантным фильтром Фуко-Гильберта, коммутатор бихроматических щелевых источников и синхронизатор, выход которого подключен к управляющим входам коммутатора бихроматических щелевых источников, видеорегистрирующего устройства и системы обработки изображения. 1 ил.

Изобретение предназначено для цветной визуализации в реальном времени полей оптической плотности и может найти применение в научных исследованиях и в промышленных технологиях, связанных с необходимостью бесконтактного контроля структуры газовых и конденсированных сред.

Известны устройства такого назначения. В [1] описана система, представляющая собой стандартную черно-белую теневую трубу, в которой псевдоокрашивание тенеграмм осуществляется средствами электронно-вычислительной техники. Недостатком является ограниченное быстродействие, связанное с последовательным режимом обработки массива данных, соответствующего изображения тенеграмм, и потеря информации о знаке градиента оптического поля плотности.

Другое устройство, описанное в [2] представляет собой прибор, в котором содержится щелевой источник белого света и сопряженный с ним бихроматический нож Фуко. Недостатком устройства является низкая чувствительность из-за технологических проблем формирования визуализирующей кромки и узкополосных цветных фильтров бихроматического ножа Фуко.

Ближайшим аналогом изобретения является цветной визуализатор, описанный в [3] Он представляет собой теневой прибор, в котором бихроматический узкополосный щелевой источник оптически сопряжен с биквадрантным фильтром Фуко-Гильберта, а выходной сигнал регистрируется цветной видеокамерой. Такая конфигурация успешно решает проблему цветной визуализации в реальном времени проекции градиента оптического поля плотности в направлении, перпендикулярном щели. При этом выполняется хроматическое кодирование знака визуализированной проекции градиента коэффициента преломления. Основной недостаток этого устройства состоит в невозможности получения информации о двумерном пространственном распределении.

В основу изобретения положена задача создания визуализатора, который позволяет визуализировать градиент двумерного оптического поля плотности. Задача решается тем, что в цветном визуализаторе полей оптической плотности, содержащем последовательно расположенные формирующий объектив с бихроматическим щелевым источником в передней фурье-плоскости, фурье-сопряженным с формирующим приемным объективом, в задней фурье-плоскости которого помещен биквадрантный фильтр Фуко-Гильберта, согласованный с щелевым источником, видеокамеру с подключенными к ней системой обработки изображения и видеорегистрирующим устройством, согласно изобретению, дополнительно введены: второй бихроматический щелевой источник, ортогональный первому и оптически сопряженный с биквадрантным фильтром Фуко-Гильберта, коммутатор бихроматических щелевых источников и синхронизатор, выход которого подключен к управляющим входам коммутатора бихроматических щелевых источников, видеорегистрирующего устройства и системы обработки изображения.

На чертеже приведена схема предлагаемого визуализатора.

Визуализатор содержит бихроматический крестообразный источник, в котором последовательно размещены световые излучатели 1 и 2, согласующие линзы 3 и 4, светопроводы 5 и 6, выходные каналы которых образуют ортогонально ориентированные в пространстве щелевые источники 7 и 8 с бихроматическими фильтрами, рекомбинационный элемент 9 в виде, например, кубика с рекомбинирующей диагональной плоскостью, объектив 10, проектирующий изображения щелевых источников 7 и 8 на крестообразную щелевую маску 11, размещенную в передней фурье-плоскости формирующего объектива 12. Приемный объектив 13 фурье-сопряжен с формирующим объективом 12. В задней фурье-плоскости приемного объектива 13 установлен биквадрантный фильтр Фуко-Гильберта 14, оптически сопряженный с бихроматическим крестообразным источником. Последовательно за биквадрантным фильтром Фуко-Гильберта установлена цветная видеокамера 15. Выход синхронизатора 16 подключен к управляющим входам коммутатора световых излучателей, системы обработки изображений 18 и видеорегистрирующего устройства 19, сигнальные входы которых подсоединены к выходу видеокамеры.

В данном устройстве световой источник представляет собой суперпозицию двух ортогонально ориентированных и последовательно во времени коммутируемых щелевых источников. Один из них образован световым излучателем 1, согласующей линзой 3, световодом 5, имеющим световую конфигурацию выходного конца с бихроматическим фильтром 7, рекомбинационным элементом 9, объективом 10 и соответствующей щелевой маской 11. Другой щелевой источник образован элементами 2, 4, 6, 8, 10 и второй щелевой компонентой в крестообразной маске. Цветовые компоненты каждого из бихроматических источников выбирают в разнесенных спектральных областях излучения (например, в красной и зеленой).

Визуализатор действует следующим образом. Объектив 12 выполняет фурье-преобразование функций S1 и S2, описывающих бихроматические щелевые источники: Здесь 1 и 2 длины волн излучения, 2b длина щелевого источника, 2а его ширина, a/b <<1. Оптические неоднородности, присутствующие в исследуемой среде, вызывают фазовую модуляцию волнового фронта световой волны, описываемой фурье-трансформантой функции бихроматического щелевого источника. Приемный объектив 13 выполняет обратное фурье-преобразование оптического сигнала, представляющего произведение фурье-образа функции источника и функции, описывающей фазовые свойства исследуемой среды. Поэтому в пространственно-частотной плоскости объектива 13 оптическое поле определяется сверткой функции щелевого источника и фурье-образа фазовой функции среды. В фурье-плоскости объектива 13 помещен фильтр Фуко-Гильберта, выполняющий преобразование частота. Поскольку световой источник сформирован в виде бихроматической щели, оптически сопряженной с фильтром, поле непосредственно за фильтром является суперпозицией двух хроматически окрашенных световых сигналов, возникающих из-за преломления световой волны на фазовых неоднородностях в среде. Для источника S1, ориентированного вдоль оси y0, сопряженной с осью пространственных частот y, световой сигнал на длине волны 1 соответствует пространственным частотам x, а сигнал на длине волны 2 - отрицательным пространственным частотам (-x). Соответственно для бихроматического щелевого источника S2, ориентированного по оси x0, оптически сопряженной с осью пространственных частот x, световой сигнал на длине волны 1 соответствует положительным пространственным частотам (-y), а сигнал на длине волны 2 отрицательным пространственным частотам y. Оптическая система видеокамеры выполняет обратное фурье-преобразование сигнала, сформированного на выходе фильтра Фуко-Гильберта. Гильберт-преобразование в фурье-плоскости сводится к умножению спектра исследуемого сигнала на функцию [4] H() = jsgn() (3).

Поэтому выходной сигнал после обратного преобразования содержит гильберт-трансформанту фазовой функции , характеризующей распределение оптической плотности в исследуемой среде [3] Для выходного сигнала, соответствующего бихроматическому щелевому источнику S1, имеем: Аналогично для ортогонального бихроматического щелевого источника S2 получаем выходной сигнал:
где A1 и B1 квазипостоянные величины, характеризующие аддитивный и мультипликативный фон, несущественный для результатов анализа выходного сигнала;
i индекс, соответствующий длине волны i в излучении бихроматического источника;
функция, описывающая распределение слабых фазовых неоднородностей в исследуемой среде;
Hx() и Hy() соответственно x и y компоненты гильберт-преобразования поля оптической плотности ;
(-1)1 sgn(Hx,y) знаковая функция гильберт-трансформанты S1F;
S2F фурье-образы функций источников S1 и S2.

Из (4) и (5) видно, что интенсивность выходного сигнала представляет собой суперпозицию гильберт-трансформанты оптической плотности исследуемой среды и фона. При этом осуществляется цветовая кодировка знака гильберт-образа.

Операция гильберт-преобразования, как известно [4] имеет некоторое сходство с пространственным дифференцированием. Поэтому гильберт-образ выходного оптического сигнала отображает градиентные свойства пространственного распределения коэффициента преломления в исследуемой среде. Визуализируются оптические неоднородности, проекция градиента которых направлена ортогонально большей стороне щели щелевого источника.

Коммутация щелевых источников S1 и S2 синхронизируется с коммутацией каналов системы обработки изображений 18 и видеорегистрирующего устройства 19. Система позволяет визуализировать градиент двумерного распределения оптического поля плотности в исследуемой среде. При этом регистрируется динамика изменения двумерных полей плотности в спектральной полосе, верхняя граница которой , где fк частота коммутирования каналов. Это соотношение удовлетворяет известной теореме отсчетов Котельникова, согласно которой частота регулярной выборки должна вдвое превышать наивысшую частоту в спектре исследуемого процесса. Например, при частоте коммутации f 40 Гц осуществляется цветная визуализация двумерного поля оптической плотности в полосе частот 10 гЦ.

Таким образом, предложенное устройство позволяет в реальном времени осуществлять цветную визуализацию градиента двумерных полей оптической плотности с хроматическим кодированием знака градиента.

Предложенное устройство реализовано в виде лабораторного действующего макета.

Источники информации
1. Арбузов В.А, Полещук А.Г. Федоров В.А. Лазерная цветовая диагностика оптически сред //Тезисы докл. Всесоюзной конференции "Автоматизация научных исследований на основе ЭВМ". Новосибирск, 14-18.09.1974.

2. Васильев Л.А. Теневые методы. М. Наука. 1986. 400 c.

3. V.A. Arbuzov, Yu.N. Dubnistchev. Real-time coloured visualization of phase flows by the schliren method//Optics and Laser Technology. 1991. V.23, N 2, p.118-120.

4. Сороко. Гильберт-оптика. М. Наука. 1981. -С.160.


Формула изобретения

Цветной визуализатор полей оптической плотности газовых и конденсированных сред, содержащий последовательно расположенные формирующий объектив с бихроматическим целевым источником в передней Фурье-плоскости, Фурье-сопряженный с формирующим приемный объектив, в задней Фурье-плоскости которого помещен биквадатный фильтр Фуко-Гильберта, согласованный с щелевым источником, видеокамеру с подключенной к ней системой обработки изображения и видеографическим устройством, отличающийся тем, что дополнительно введены второй бихроматический щелевой источник, ортогональный первому и оптически сопряженный биквадратному фильтру Фуко-Гильберта, коммутатор бихроматических щелевых источников и синхронизатор, выход которого подключен к управляющим входам коммутатора бихроматических щелевых источников, видеорегистрирующего устройства и системы обработки изображения.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано при контроле оптических деталей с вогнутыми эллиптическими поверхностями

Изобретение относится к измерительной технике и может быть использовано в оптическом приборостроении для контроля формы волновых фронтов и оптических поверхностей

Изобретение относится к измерительной технике и может использоваться при контроле линзовых антенн

Изобретение относится к оптическому приборостроению и может быть использовано при разработке устройств контроля качества оптических деталей и определения фазовых искажений в прозрачных оптических средах

Изобретение относится к экспериментальным методам исследования нестационарных и быстропротекающих процессов в прозрачных неоднородностях с помощью оптический устройств

Изобретение относится к оптическим теневым приборам, осуществляющим анализ теневой картины

Устройство может быть использовано для контроля формы поверхностей оптических деталей, а также для измерения неоднородностей оптических материалов. Устройство содержит осветитель, конденсор, задающий и анализирующий пространственные фильтры, приемно-регистрирующее устройство. Задающий и анализирующий пространственные фильтры совмещены и выполнены в виде симметричной зеркальной марки, нанесенной на тонкой плоскопараллельной оптической пластине. Геометрический центр марки совмещен с точкой пересечения оптических осей осветителя и приемно-регистрирующей системы. Пластина установлена таким образом, чтобы ее плоская поверхность с нанесенной на нее симметричной зеркальной маркой составляла равные углы с оптическими осями осветителя и приемно-регистрирующей системы. Технический результат - повышение точности контроля формы поверхностей оптических деталей и упрощение юстировки схемы контроля за счет конструктивного совмещения задающего и анализирующего пространственных фильтров. 3 ил.

Устройство может быть использовано для исследования быстропротекающих процессов в газах и других прозрачных средах, например в ударных волнах. Устройство содержит источник монохроматического излучения, два прозрачных плоскопараллельных окна, между которыми находится исследуемая среда, нож Фуко, регулируемую по ширине щель, перпендикулярную кромке ножа Фуко, фотоприемник, запоминающее устройство. Угол падения луча света на входное окно больше нуля. Кромка ножа Фуко расположена параллельно направлению движения неоднородности или градиенту изменения показателя преломления. По изменению сигнала фотоприемника судят об изменении оптических свойств исследуемой среды. Регистрируется смещение луча в направлении, перпендикулярном градиенту изменения показателя преломления, в зависимости от показателя преломления среды в сечении. Технический результат - возможность определения показателя преломления исследуемой среды в известном сечении устройства. 3 ил.
Наверх