Электродинамический лайнер

 

Изобретение относится к электротехнике, конкретно к технике создания и применения сильных импульсных магнитных полей. В устройствах, известных под названием магнитно-кумулятивные генераторы, энергия взрывчатого вещества путем разгона лайнера преобразуется в энергию сверхсильного магнитного поля либо в импульс тока большой величины. Лайнер, взаимодействующий с сильным импульсным магнитным полем, изготовляют из композиции двух или большего числа материалов с различной проводимостью таким образом, чтобы эффективная проводимость возрастала в направлении убывания магнитного поля. Число слоев, содержащих различные материалы, и их толщины должны выбираться так, чтобы время обмена теплом между компонентами композиции было меньше длительности импульса магнитного поля. 1 табл., 1 ил.

Изобретение относится к электротехнике, конкретно к технике создания и применения сильных импульсных магнитных полей.

Известны устройства [1, 2, 3], называемые магнитно-кумулятивными генераторами (МК-генераторами), в которых энергия взрывчатого вещества (ВВ) преобразуется в энергию сверхсильного магнитного поля (МК-1) либо в импульс тока большой величины (МК-2). В последнем случае, пропуская ток через подвижный поршень (лайнер), разгоняют лайнер до больших скоростей - 10 км/с и более.

В обоих случаях - при обжатии начального магнитного поля и при разгоне макрочастиц давлением магнитного поля важным фактором, влияющим на получаемые результаты, является плавление и испарение лайнеров, обусловленное концентрацией магнитного поля и токов проводимости вблизи края лайнера, контактирующего с магнитным полем.

Одним из способов, позволяющих замедлить процесс нагрева лайнера до критической температуры, служит предварительное охлаждение лайнера до температуры жидкого водорода - 15 К [2, с. 21]. Учет различных факторов, влияющих на движение лайнера, требует применения ЭВМ [4]. Сравнение расчетов и экспериментов проведено в работах [5, 6].

Наиболее близкой к изобретению с точки зрения подхода к выбору оптимальных параметров лайнера является работа [7], принимая за прототип. В частности, заменяя материал лайнера - медь на алюминий, можно согласно [7] увеличить скорость метания в 2 раза, а при замене алюминия на бериллий скорость возрастает еще в 1,5 раза.

Общим недостатком известных конструкций лайнеров является то, что проводимость материала лайнера постоянна по толщине. Это обуславливает концентрацию токов близи границы лайнера, контактирующей с магнитным полем, приводит к испарению и потере массы.

В оптике на границе двух сред с разными показателями преломления происходит отражение света, что приводит к уменьшению светосилы приборов. Для ослабления этого эффекта вводят просветляющие слои, которые обеспечивают плавное изменение показателя преломления.

Сущность данного изобретения состоит в том, что электродиначеский лайнер, взаимодействующий с сильным импульсным магнитным полем, изготовляют из композиции двух или большего числа материалов с различной проводимостью таким образом, чтобы эффективная проводимость возрастала в направлении убывания магнитного поля, а число слоев, содержащих различные материалы, и их толщины должны выбираться так, чтобы время обмена теплом между компонентами композиции было меньше длительности импульса магнитного поля.

Реализовать требуемый закон изменения проводимости (x) по толщине лайнера можно разными способами. Пример выполнения композитного лайнера поясняется чертежом, где 1 - материал с большей проводимостью 1 толщиной ai; 2 - материал с меньшей проводимостью 2 толщиной bi; i = 1, 2,..., N; N - число слоев, ai + bi = const = h; L - толщина лайнера, так что L = N h.

Объемная концентрация первой компоненты в i-ом слое i= ai/h ; объемная концентрация второй компоненты в i-ом слое i= bi/h , причем i+i= 1 . Координата x отсчитывается от левого края, где приложено магнитное поле Ho(t), параллельное плоскости лайнера, 0<x<L. На чертеже материал с большей проводимостью заштрихован. Толщина слоев h должна быть такой, чтобы изменение концентраций i, i при переходе от одного слоя к соседнему было малым.

Известно [2] , что проникновение импульсного магнитного поля в материал лайнера описывается уравнением диффузии: при граничных условиях а) x = 0: H(x = 0, t) = H0(t); б) x = L : H(x = L, t) = 0. (2) В уравнении (1) коэффициент диффузии D(x) связан с проводимостью (x) соотношением D(x) = A/(x), (3) где A - постоянная. Как отмечается в [2, с. 63], магнитные свойства материалов можно не учитывать, так как рассматриваются сильные магнитные поля, значительно превышающие поле насыщения. При этом в гауссовой системе единиц A = c2/(4), где c - скорость света в вакууме. Объемная плотность джоулевых потерь в единицу времени равна Неравномерное по толщине лайнера выделение джоулева тепла приводит к появлению тепловых потоков и выравниванию температуры. Скорость этого процесса зависит от величины коэффициента температуропроводности f. Справочные данные [8] показывают, что для таких материалов, как медь, алюминий, бериллий, выполняется неравенство f/D<10. (5)
За время диффузии поля сквозь лайнер обмен теплом успеет произойти между точками, расстояние между которыми порядка . Приняв во внимание (5), получим, что l/L<0,1. Это означает, что накопление джоулева тепла Q(x, t) в каждой точке лайнера происходит автономно и, следовательно, его можно вычислить, интегрируя w(x, t) из (4) по времени:
Q(x,t) = t- w(x,t)dt. (6)
Как отмечается в [2, с. 70], большая часть явлений, зависящих от диффузии магнитного поля, мало чувствительна к форме импульса H0(t) в граничном условии (2, а). Учитывая это обстоятельство, можно для упрощения расчетов рассматривать экспоненциально нерастающее поле
Ho(t) = Hexp(t/T); - < t < , (7)
где H - постоянная, T - эффективное время, равное с точностью до множителя порядка единицы длительности переднего фронта внешнего поля. Согласно [2, с. 72] близкий к экспоненциальному рост поля наблюдается в установках типа МК-1, использующих принцип обжатия магнитного потока. Условие (7) позволяет представить решение уравнения (1) в виде
H(x, t) = H0(t)f(x), (8)
причем функция f(x) служит решением уравнения

при граничных условиях
а) f(x = 0) = 1; б) f(x = L) = 0. (10)
Рассмотрим вначале обычный вариант, когда проводимость лайнера постоянна по толщине:
(x) = const = o; D(x) = const = Do= A/o. (11)
Время диффузии через такой лайнер определяют так:
tд = L2/D0. (12)
Для варианта (11) решением уравнения (9) при условиях (10) будет

Подстановка (13) в (8) и (4) дает два варианта (11):

Эта функция монотонно убывает с ростом x, поэтому степень неравномерности разогрева дается отношением
Mo= wo(x=0,t)/wo(x=L,t) = (ch)2. (15)
Способность лайнера удерживать магнитное поле можно характеризовать величиной магнитного потока , прошедшего через правую границу лайнера x = L:

По аналогии с [2, с. 7] введем величину скин-слоя по формуле
(t) = Ho(t)S. (17)
Для варианта (11), используя (13) и (16), получим

С целью подтверждения эффективности заявляемой конструкции лайнера в соответствии с чертежом положим

Варианту (11) соответствует значение k = 0. Решение ищем в форме (8), причем теперь функции f(x) удовлетворяет уравнению

где по аналогии с (12) и (13) введены обозначения
д= L2/D; q = д/T. (21)
Уравнение (20) при условиях (10) имеет решение

Подставив (22) в (4), получим

Аналогично (15) составим отношение

При K = 0 формула (24) переходит в (15). Подставив (22) в (16) и (17), получим скин-слой для варианта (19):

При K = 0 (25) переходит в (18). Величина M из (24) зависит от параметров q, k, изменяя которые можно придать M требуемое значение. С помощью (23) можно показать, что наименьшее значение w, (x,t) принимает в одной из внутренних точек отрезка (0, L), а наибольшее значение w(x, t) принимает на одной из границ.

В однородном лайнере наибольшее выделение тепла происходит на левой границе; из (14) находим

Аналогичным образом из (23) находим

При экспоненциальном росте поля формула (6) примет вид

Обозначим через C1, C2 объемную теплоемкость первой и второй компоненты соответственно. Теплоемкость композитного лайнера в каждой точке вычисляется по формуле
C(x) = C1(x)+C2(x); (x)+(x) = 1, (29)
где (x), (x) - объемные концентрации компонент. Обозначим через (x,t) местное увеличение температуры, тогда
(x,t) = Q(x,t)/C(x). (30)
Для того, чтобы температура ни в одной точке не превысила критической величины, определяемой наименее стойкой из двух компонент, необходимо, чтобы разогрев в крайних точках был одинаков: (0,t) = (L,t).. Из (28) и (30) следует, что для этого должно выполняться равенство
w(o,t)/C(o) = w(L,t)/C(L). (31)
С помощью (24) условие (31) можно записать в виде
M = ; = C(0)/C(L). (32)
В геометрии чертежа, которая соответствует параллельному соединению участков с разной проводимостью, эффективная проводимость (x) вычисляется следующим образом:

поскольку функция (x) должна совпадать с формулой (19). Примем дополнительно, что на правой границе присутствует только первая компонента, т.е. (L) = 1; (L) = 0; (L) = = 1 . Так как (x)+(x) = 1 , то из (33) находим

Как видно из (34), функция (x) > 0 для всех x, функция (x) убывает с уменьшением x от значения (L) = 1 до значения (0) = [(1-K)2-R]/(1-R). Для того, чтобы было (0) > 0, должно выполняться условие

Пусть 1, 2 - плотности компонент, тогда удельные массы m1, m2 компонент и удельная масса m лайнера вычисляются по формулам

где mo= 1L - удельная масса однородного лайнера из материала первой компоненты. Подставим теперь (34) в (29):

Пусть два лайнера - композитный и однородный, выполненный из материала первой компоненты, имеют одинаковую толщину L. В таком случае D0=D1, а параметры P и q связаны формулой
P = q/(1-k)2. (38)
Примем также, что критическая температура определяется первой компонентой, так что для обоих лайнеров критическая температура одна и та же. В этих предположениях найдем соотношение полей H0(x) и H(t) соответственно из (26) и (27), при которых оба лайнера в наиболее напряженных точках будут иметь одинаковый разогрев.

Для однородного лайнера разогрев левой границы согласно (26) и (28) равен

Аналогично, для композитного лайнера из (27), (28) получим

В силу сделанных предположений левые части (38) и (39) должны быть равны. Отсюда, используя обозначения из (37), получим
= [H(t)]2/[Ho(t)]2= Uo/U. (41)
Давление магнитного поля на лайнер пропорционально квадрату напряженности поля. Поскольку в формулах (26) и (27) параметр T одинаков, поэтому время действия поля на оба лайнера также предполагается одинаковым. В этих предположениях отношение достигнутых лайнерами скоростей V и V0 находится из условия mV/m0V0 = [H(t)]2/H0(t)]2, т.е. с учетом (36)
v/vo= /. (42)
Отношение кинетических энергий лайнеров E и E0 дается формулой
E/Eo= mv2/(mov2o) = 2/. (43)
Пример. Рассмотрим лайнер на основе композиции алюминий (1) + слюда (2), в которой термостойкость определяется алюминием. Необходимые для расчета исходные данные взяты из справочника [8] (см. таблицу).

Коэффициент диффузии D через удельное сопротивление r выражается следующим образом:
D(см2/c) = 109/(4)r (Омсм). (44)
Число слоев N и их толщина h на чертеже необходимо выбрать так, чтобы время обмена теплом tQ между двумя компонентами в пределах одного слоя было меньше длительности импульса поля tu.

Обозначим через f меньший из двух коэффициентов температуропроводности. Тогда по порядку величины
tQ = h2/f. (45)
Толщина слоя выбирается согласно неравенству tQ tu, т.е.


Из таблицы найдем, что f = x2 = 2 10-3 см2/с. Подставим в (46) типичное для ряда устройств согласно [2, с. 16] значение tu = 0,01 с. В результате получим, что h 45 мкм.

Для варианта таблицы положим K = 0,7. Из (37) и (36) находим = 0,9636; = 1,028. Из (32) и (24) подбором находим q = 0,8017. Согласно (38) этому соответствует P = 8,9077. Затем по приведенным выше формулам получим U = 0,5843; S/L = 0,2609; Uo = 1,0103; So/L = 0,0340; S/So = 7,6735; = 1,6661; ; V/Vo = 1,6207; E/Eo = 2,6838.

В рассмотренном примере использование композитного лайнера позволяет на 30% увеличить магнитное поле, не превышая допустимой температуры; скорость лайнера при этом возрастает в 1,6 раза, а энергия - 2,7 раза.

Данный расчет показал, что при переходе от однородного лайнера к композитному скин-слой, определяемый по формуле (16), увеличился в 7,7 раза. Однако область, занятая ускоряющим магнитным полем, обычно значительно превышает толщину лайнера L, поэтому потери магнитного потока в обоих случаях могут считаться незначительными. С другой стороны, в некоторых ситуациях, например при рассмотрении многокаскадных конструкций типа МК-1 [3, с. 226], в процессе ускорения лайнера необходимо обеспечить прохождение сквозь лайнер некоторой части магнитного потока для его последующего обжатия.

Литература.

1. А.Д.Сахаров. Научные труды. М.: Центрком, 1995, с. 65 - 90.

2. Г.Кнопфель. Сверхсильные импульсные поля. М.: Мир, 1972.

3. А. И.Павловский, Р.З.Людаев. Магнитная кумуляция. В кн. Вопросы современной экспериментальной и теоретической физики. Л.: Наука, 1984, с. 206 - 270.

4. А.Д.Подольцев, И.Н.Кучерявая. Моделирование на ЭВМ переходных процессов в электродинамическом ускорителе с учетом нелинейной диффузии магнитного поля. Препринт АН УССР, Институт электродинамики (ИЭД), Киев, 1987.

5. Ю. А. Алексеев, А.А.Беликов, М.Н.Казеев и др. Исследование абляции в рельсовых электромагнитных ускорителях. Препринт ИАЭ N 4984/7, М., 1989.

6. В. Б. Железный, А.В.Загорский, С.С.Кацнельсон и др. Теоретическое и экспериментальное моделирование работы рельсового ускорителя. Журнал прикладной механики и технической физики (ПМТФ), N 2, 1993, с. 32 - 36.

7. В.Н.Бондалетов, Е.Н.Иванов, С.А.Калихман и др. Метание проводников в сверхсильном импульсном поле - прототип. В сб. Сверхсильные магнитные поля. Физика. Техника. Применения. Труды 3-й Международной конференции по генерации мегагауссных магнитных полей и родственным экспериментам. Новосибирск, 13 - 17 июня 1983. Ред. В.М.Титов, Г.А.Швецов. М.: Наука, 1984, с. 234 - 238.

8. Справочник по электротехническим материалам. Ред. Ю.В.Корицкий, В.В. Пасынков, Б. М. Тареев. Том 2, М.: Энергоатомиздат, 1987, том. 3, Л.: Энергоатомиздат, 1988.


Формула изобретения

Электродинамический лайнер, взаимодействующий с сильным импульсным магнитным полем, отличающийся тем, что его изготовляют из композиции двух или большего числа материалов с различной проводимостью таким образом, чтобы эффективная проводимость возрастала в направлении убывания магнитного поля, а число слоев, содержащих различные материалы, и их толщины должны выбираться так, чтобы время обмена теплом между компонентами композиции было меньше длительности импульса магнитного поля.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано в других отраслях народного хозяйства

Изобретение относится к обработке субстрата в поле магнитного векторного потенциала

Изобретение относится к электротехнике, в частности, к устройствам для прямого преобразования тепловой энергии в электрическую

Изобретение относится к области машиностроения и может быть использовано в двигательных (тяговых) системах для механической энергии в другие виды энергии

Изобретение относится к импульсной технике, в частности, к магнитокумулятивным генераторам импульсных магнитных полей, действие которых основано на сжатии магнитного потока, и может быть использовано для запитки высокоскоростных ускорителей масс, для геофизических исследований и различных технологических применений, а также в экспериментальной физике в качестве мощного источника тока и магнитного поля

Изобретение относится к области движителестроения и генераторостроения и может быть использовано для получения электрической энергии и/или приведения в движение транспортных средств в земном и космическом пространстве

Изобретение относится к области мощной сильноточной импульсной электротехники, в частности к системам электроснабжения (СЭС) на основе емкостных накопителей энергии (ЕНЕ) и может быть использовано для запуска (зажигания) электрического разряда в многоступенчатых рельсотронах, в том число с предускорением

Изобретение относится к области прямого преобразования электрической энергии в кинетическую, в частности к проблеме электромагнитного разгона твердых тел в рельсовых ускорителях кондукционного типа рельсотронах

Изобретение относится к прямому преобразованию электрической энергии в кинетическую энергию метаемого твердого тела, в частности к реализации электромагнитного разгона твердых тел в рельсовых ускорителях кондукционного типа-рельсотронах

Изобретение относится к области прямого преобразования электрической энергии в кинетическую энергию метаемого твердого тела, в частности к реализации способа электромагнитного разгона твердых тел в рельсовых ускорителях кондукционного типа рельсотронах

Изобретение относится к технике, связанной с электромагнитным ускорением тел, и может быть использовано для исследования ударного взаимодействия тел, например, в научных исследованиях при излучении физики высокоскоростного удара, при разработке узлов и механизмов импульсных устройств

Изобретение относится к прямому преобразованию электрической энергии в механическую (кинетическую энергию метаемого тела), в частности к реализации способа электромагнитного разгона твердых тел в рельсовых ускорителях кондукционного типа

Изобретение относится к линейным электродвигателям, а именно к электродинамическим летательным установкам, использующим для ускорения якоря электромагнитные силы, и может быть использовано в системах противоракетной и противовоздушной обороны, а также в составе технологического и лабораторного оборудования для получения сверхвысоких давлений и скоростей

Изобретение относится к плазменной технике и может быть использовано в электромагнитных ускорителях, ускоряющих снаряды и предназначенных для изучения взаимодействия плазмы и снаряда со стенками ускоряющего канала в атмосфере

Изобретение относится к средствам защиты тела человека от ударов пуль, осколков, колющих и режущих предметов

Изобретение относится к военной технике, а именно к противоположным электродинамическим пушкам, используемым в зоне действия третьего эшелона противоракетной обороны
Наверх