Инжектор

 

Использование: в области струйной техники. Сущность: глубина продольных винтовых канавок сопла инжектора составляет не менее 0,05 диаметра цилиндрической части последнего, а угол подачи продукта в камеру смешения определяют соотношением , где t - шаг винтовой канавки, R,r - большой и малый радиусы сопла, - угол наклона поверхности сопла. 1 табл., 3 ил.

Изобретение относится к устройствам типа струйных насосов, в частности к вихревым инжекторам.

Известны инжекторы с регулируемой подачей сопла, содержащие активное сопло, перемещающееся с помощью резьбы в рабочей камере [1]. Последняя снабжается приемной камерой со штуцером. Засасываемый газ из приемной камеры поступает в камеру смешения через радиальные отверстия, выполненные на периферии камеры смешения и соединяющие последнюю с приемной камерой.

Недостаток - степень сжатия инжектируемого газа, а значит, и его количество являются в ряде случае недостаточными.

Известны также вихревые эжекторы [2], содержащие закрытую с торцов цилиндрическую камеру смешения с тангенциальным активным соплом и расположенными по ее оси на противоположных концах пассивным соплом и входным каналом газосборника, в которых повышение степени сжатия эжектируемого потока осуществляется за счет увеличения угловой скорости вращения потока с помощью камеры смешения конической формы, в котором активно сопло и канал расположены в узком сечении камеры, имеющей форму диффузора.

Недостаток - в известном устройстве использован эффект закрученных потоков создавать обратный вращающийся в ту же сторону ток жидкости. С помощью последнего создается пониженное давление в центре вращения потока, куда и засасывается инжектируемый поток. Однако при этом происходят значительные потери энергии закрученного потока, т.к. используется только вторичная энергия закрутки, а именно обратный вихревой ток жидкости.

Наиболее близким техническим решением к предлагаемому изобретению является инжектор [3], содержащий сопло с продольными винтовыми канавками, камеру подвода пассивной среды и патрубки пассивной и активной сред.

Недостаток - низкая степень сжатия инжектируемого потока газа.

Задача изобретения - повышение эффективности работы устройства путем интенсификации процесса за счет повышения степени сжатия инжектируемого потока газа и более полного использования энергии закрутки.

Поставленная задача достигается тем, что инжектор, содержащий камеру подвода пассивной среды, патрубки пассивной и активной сред и сопло с продольными винтовыми канавками, глубина которых составляет не менее 0,05 диаметра цилиндрической части сопла, а угол подачи продукта в камеру смешения определяют соотношение где t - шаг винтовой канавки; R, r - большой и малый радиусы сопла; - угол наклона поверхности сопла.

На фиг. 1 показан общий вид прямоточного вихревого инжектора; на фиг. 2 - сопло с винтовыми каналами для закрутки потока; на фиг. 3 - вид А-А фиг. 1.

Инжектор включает подводящий трубопровод 1 с втулкой 4 и с рабочим активным соплом 6. Сопло 6 выводится в камеру смешения 3 цилиндрической формы. Камера смешения 3 заканчивается конфузором. Камера смешения соединяется с конфузором либо с помощью резьбовой муфты, либо с помощью фланцев. Регулирование зазора между камерой смешения и соплом осуществляется при помощи резьбового соединения 2 втулки с подводящим трубопроводом путем вращения втулки. Для этого втулка снабжается привинченными рукоятками 5. С целью предотвращения выхода рабочего продукта между втулкой и корпусом рабочей камеры установлены уплотнительные кольца. Для закрутки потока внутренняя поверхность соплового наконечника снабжается винтовыми каналами прямоугольной формы, равномерно расположенными по окружности сопла с глубиной канавки не менее 0,05 диаметра сопла в цилиндрической части и сходящими на нет на выходе из сопла. По окружности эти канавки занимают не менее 50% окружности сопла. Для уменьшения сопротивления инжектируемого продукта последний подается в камеру смешения тангенциально под углом , тангенс которого равен где t - шаг винтового канала; R, r - большой и малый радиусы сопла;
- угол наклона поверхности сопла.

Устройство работает следующим образом.

Рабочая жидкость под давлением через подводящий трубопровод и втулку подается в сопло, где она приобретает вращательное движение за счет передачи энергии вращения из поверхностных слоев к внутренним. Для эффективного закручивания внутренних слоев потока необходима закрутка хотя бы на глубине 0,05 диаметра сопла. В силу такой интенсивной закрутки потока один объем жидкости способен инжектировать несколько объемов газа, что указывает на увеличение степени сжатия инжектируемого потока. Этому же способствует и наклонный тангенциальный ввод в камеру сжатия под углом, равным углу подъема винтового канала.

Конструктивное исполнение внутренней поверхности сопла в виде большого цилиндра, переходящего в конус и далее малый цилиндр, и выполнение на ней винтовых канавок позволяет более эффективно закручивать поток жидкости. Профиль канавок может быть произвольный, например прямоугольный. Смещение винтовой канавки от большого диаметра - основания усеченного конуса - до его малого диаметра составляет /2. . Глубина канавки при этом равномерно изменяется от максимального значения у большого диаметра основания усеченного конуса.

Для подтверждения вышесказанного были проведены сравнительные лабораторные испытания известного и предлагаемого инжекторов. Эффективность работы устройства оценивалась по разрежающей способности предлагаемой конструкции инжектора. Величина разрежения в камере смешения определялась с помощью U-образного ртутного манометра при давлении жидкости (воды) во входном патрубке рабочего сопла 0,2 МПа. Результаты испытаний приведены в таблице.

Как видно из таблицы, увеличение величины разрежения на величину 30-40% происходит за счет выполнения инжектора с соплом с винтовыми канавками глубиной 0,05 диаметра цилиндрической наружной поверхности сопла. Следует ожидать, что при одинаковых параметрах перекачки газов инжекторами в последнем случае объем его возрастет на 30-40%.

Использование предлагаемого изобретения позволит значительно интенсифицировать процесс инжекции газов жидкостью, что позволяет решить ряд важнейших народнохозяйственных задач по перекачке газосодержащих жидкостей, в частности нефти и нефтепродуктов, а значит, сэкономить большие количества попутного газа и довести их до потребителя, не сжигая на факелах, или хотя бы не сжигая наиболее ценные его компоненты.


Формула изобретения

Инжектор, содержащий сопло с продольными винтовыми канавками, камеру подвода пассивной среды и патрубки пассивной и активной сред, отличающийся тем, что глубина продольных винтовых канавок сопла составляет не менее 0,05 диаметра цилиндрической части последнего, а угол подачи продукта в камеру смешения определяют соотношением

где t - шаг винтовой канавки;
R, r - большой и малый радиусы сопла;
- угол наклона поверхности сопла.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к области струйной техники, преимущественно к струйным вихревым аппаратам для обработки призабойной зоны пласта скважины гидродинамическими импульсами рабочей среды

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для возбуждения скважины путем создания депрессии, и может быть использовано для освоения скважин, вызова притока нефти, воды, газа, эксплуатации скважины и газлифтной добычи нефти

Изобретение относится к химической, нефтехимической, нефтяной, энергетической, металлургической промышленностям и другим отраслям, где возникает необходимость использования струйных аппаратов (эжекторов, инжекторов) для транспорта флюидных парогазовых, жидких или сыпучих веществ, или для системы создания вакуума путем отсасывания из аппаратов газов и паров и др

Изобретение относится к струйной технике и может быть использовано для смешения и перекачивания различных сред

Изобретение относится к струйной технике, преимущественно к струйным вихревым аппаратам для обработки призабойной зоны пласта скважины гидродинамическими импульсами рабочей среды

Изобретение относится к эжекторам и струйным насосам, применяемым в различных областях техники, в частности оно может быть использовано в скважинных глубинных струйных насосах, а также в эжекторных усилителях тяги воздушно-реактивных двигателей

Изобретение относится к области использования струйных аппаратов

Изобретение относится к струйно-вихревым аппаратам

Изобретение относится к области струйной техники

Изобретение относится к способам регулирования и настройки в процессах смешивания сред, имеющих разные параметры, например, по температуре, а также к устройствам для их осуществления за счет использования вихревого эффекта, а именно в целях снижения потерь на ударное взаимодействие рабочей и перемещаемой сред, неизбежные в струйной технике, перемещаемая среда еще до поступления до среза соплового аппарата оказывается в поле действия сил всасывания около осевого пространства вихревой трубки, возбуждаемой постоянным действием потенциальных массовых сил, роль которых выполняют струйные потоки смеси рабочей и перемещаемой сред, поступающих в плоскостях торцев вихревой трубки, - плоскости, соответственно, перпендикулярны оси вихревой трубки, - тангенциально направленно к окружности около осевого пространства вихревой трубки, в результате чего скорость перемещаемой среды возрастает и появляется возможность увеличивать производительность струйного аппарата увеличением количества движения рабочей среды за счет роста массы рабочей среды при пропорциональном уменьшении скорости рабочей среды, при этом одновременно имеется возможность изменять коэффициент эжекции, то есть соотношение масс перемещаемой и рабочей сред, что дает возможность реализации количественного регулирования и настройки, которое по крайней мере осуществляется в струйно-вихревом устройстве

Изобретение относится к области струйной техники, а более конкретно к энерготрансформаторам, и может быть использовано в качестве эжекторов, инжекторов и элеваторов, т.е

Изобретение относится к химической, нефтехимической, нефтяной, энергетической, металлургической, пищевой, фармацевтической и другим отраслям промышленности и может быть использовано для транспорта жидких, газовых, парогазовых сред, суспензий и газопорошковых смесей, а также для систем создания вакуума в технологических аппаратах

Изобретение относится к транспортированию материалов, в частности к канализационным системам

Изобретение относится к транспортированию по трубопроводам гетерогенных сред и может быть использовано в промышленности, сельском хозяйстве, строительстве, на транспорте и других отраслях промышленности
Наверх