Устройство и способ для производства энергии из геотермальной текучей среды

 

Устройство и способ предназначены для производства энергии и могут быть использованы в геотермальной энергетике. Энергия вырабатывается из геотермальной текучей среды высокого давления путем ее разделения на пар высокого давления и рассол высокого давления, расширения пара высокого давления в турбогенераторе высокого давления для получения энергии и обедненного теплом пара и отделения жидкости от обедненного теплом пара, получая тем самым высушенный обедненный теплом пар при давлении и температуре ниже, чем давление и температура пара высокого давления. Отделенная таким образом жидкость и рассол высокого давления комбинируются в испарительной камере, которая производит пар, комбинирующийся с высушенным обедненным теплом паром, и расширяется в турбогенераторе низкого давления для получения дополнительной энергии, при этом часть пара высокого давления используется для промежуточного подогрева высушенного обедненного теплом пара и пара, получаемого в испарительной камере, прежде чем пар будет расширяться в турбогенераторе более низкого давления. Изобретение позволяет создать экономичную и долговечную электростанцию. 2 с. и 8 з.п.ф-лы, 4 ил.

Настоящее изобретение касается геотермальной электростанции, работающей на геотермальной текучей среде высокого давления.

Потребность в альтернативах ископаемому топливу для получения энергии хорошо известна и геотермальные ресурсы представляют многообещающее решение. Однако для того чтобы стать экономически привлекательным, геотермальный источник должен использоваться так, чтобы обеспечить максимальный выход энергии в пределах хорошей инженерной практики. Это требует максимального преобразования как скрытого, так и физического тепла, присутствующего в геотермальной жидкости (текучей среде), и выбора термодинамического цикла максимальной эффективности. Такой цикл должен сводить к минимуму образование накипи и коррозионное воздействие геотермальных жидкостей на материалы электростанции. И наконец, экологические соображения требуют возврата всех извлеченных жидкостей и газов обратно в землю, чтобы избежать воздействия окружающей среды и предотвратить истощение ресурсов.

Многие геотермальные источники в настоящее время исследуются или эксплуатируются, производя большие количества горячего рассола при умеренных давлениях, обычно порядка 10,55 кг/см2. Однако некоторые источники дают жидкие смеси из пара и рассола при значительно более высоких давлениях, например порядка 56,25 кг/см2. В последнем случае рассол обычно является очень коррозионным и создает проблемы по его использованию и размещению. Недавно на Гавайях были пробурены геотермальные скважины, добывающие жидкость под высоким давлением, состоящую примерно из 80% пара и 20% рассола. Пар обычно является только насыщенным и возникает при этом вопрос, а как долго эти скважины смогут выдерживать давление 56,25 кг/см2 при непрерывной работе в течение многих лет.

Учитывая эту неопределенность, практикуется устанавливать редукционные клапана в поток из скважины, в результате чего может использоваться система пара низкого давления в ожидании того, что в конечном счете высокое давление уменьшится. Однако это является консервативным решением и оно дорогостояще из-за срока службы станции, так как значительное количество потенциальной энергии будет теряться.

Известно, что когда смесь насыщенного пара высокого давления и рассола поступает из геотермальной скважины, пар отделяется и подается к паровому турбогенератору с противодавлением. Отходящий пар от турбины с противодавлением подается параллельно множеству модулей, каждый из которых содержит паровой турбогенератор низкого давления. Каждый модуль также содержит конденсатор, который действует как испаритель для турбогенератора для органического пара.

Недостатком такой конструкции является то, что при условии получения максимума работы от пара высокого давления, поступающего из геотермальной скважины, пар, отходящий от турбины с противодавлением, будет влажным, и это приводит к тому, что он не пригоден для входных ступеней турбины низкого давления.

Ближайший предшествующий уровень техники, известный заявителю, раскрыт в следующих источниках, приведенных в соответствующей заявке на патент США: патент США 4665705, патент США 4189923, патент США 3762545.

Патент '705 описывает систему для минимизации образования накипи из диоксида кремния (кремнезема) в паровых котлах для испарения, используемых в геотермальных электрических станциях. Испарившийся пар приводит турбогенератор в действие, но мятый (отработавший) пар конденсируется в "дистиллированную воду" и не используется для испарения органической текучей среды.

Патент '923 показывает использование газа под давлением для осуществления подачи рассола из геотермальной скважины и испарение рассола в пар, который приводит турбогенератор в действие.

Патент '545 описывает вскипание рассола из геотермальной скважины в пар, расширение пара в турбогенераторе и соединение конденсата из отходящего пара турбины с концентрированным рассолом после операции испарения перед тем, как рассол возвращают в землю.

Паровая турбины с противодавлением, приводящая в действием генератор, может представлять альтернативный подход в том плане, что пар высокого давления из скважины может преобразовываться в пар низкого давления в турбине и подаваться параллельно на большое число модулей, которые могут работать на паре низкого давления. Каждый модуль может использовать турбогенератор пара низкого давления и конденсатор, действующий как испаритель для турбогенератора пара органической жидкости. Когда геотермальная жидкость производит только насыщенный пар высокого давления, то расширение пара в турбине происходит в области влажного пара на TS-диаграмме, производя отработавший пар, содержащий водяные капли и поэтому не пригодный для использования на входных ступенях паровых турбин низкого давления различных модулей.

Таким образом, целью настоящего изобретения является создание новой и улучшенной геотермальной электростанции, способной работать на геотермальной жидкости высокого давления без недостатков, присущих описанным выше известным конструкциям.

В соответствии с настоящим изобретением энергия получается из геотермальной жидкости высокого давления путем разделения ее на пар высокого давления и рассол высокого давления, расширения пара высокого давления в турбогенераторе высокого давления для получения энергии и обедненного теплом пара и отделением жидкости от обедненного теплом пара, тем самым получая высушенный обедненный теплом пар при давлении и температуре ниже, чем давление и температура пара высокого давления. Отделенная таким образом жидкость и рассол высокого давления объединяются в испарительной камере, которая производит пар, объединяющийся с высушенным обедненным теплом паром и расширяется в турбогенераторе более низкого давления для производства дополнительной энергии. Необязательно часть пара высокого давления используется для повторного нагрева высушенного обедненного теплом пара и пара, произведенного испарительной камерой, прежде чем этот пар будет расширен в турбогенераторе более низкого давления.

В модификации геотермальная жидкость высокого давления подается на неконтактный теплообменник или предпочтительно на несколько теплообменников, служащих в качестве испарителя и подогревателя для замкнутой паровой системы, в которой пар расширяется на ступени высокого давления турбогенератора для выработки энергии и обедненного теплом пара. Сепаратор влаги отделяет жидкость от обедненного теплом пара, вырабатывая высушенный обедненный теплом пар. Отделенная жидкость подается в испарительную камеру, в которую также поступает подогретая вода из подогревателя и которая производит пар, объединяющийся с высушенным обедненным теплом паром и направляющийся в турбогенератор более низкого давления.

Варианты настоящего изобретения показаны на прилагаемых чертежах, где: фиг. 1 - блок-схема первого варианта настоящего изобретения, обеспечивающего максимальное извлечение энергии из геотермального источника высокого давления, непосредственно используя геотермальную жидкость, производимую этим источником; фиг. 2 - блок-схема модификации варианта, показанного на фиг. 1, но использующего подогреватель; фиг. 3 - блок-схема второго варианта настоящего изобретения, аналогичного первому варианту, но косвенно использующего геотермальную жидкость; фиг. 4 - блок-схема модификации варианта, показанного на фиг. 3.

Как показано на чертежах, цифрой 10 обозначен один вариант геотермальной электростанции в соответствии с настоящим изобретением, работающей на геотермальной жидкости высокого давления. Геотермальная жидкость подается из эксплуатационной скважины 12 и обычно она добывается при давлении 56,25 кг/см2 и состоит из смеси около 80% насыщенного пара и 20% концентрированного рассола. Композитная жидкость, получаемая из скважины 12, направляется в первую испарительную камеру 14, в которой жидкость разделяется по двум каналам, канал, содержащий пар высокого давления, обозначен цифрой 15, а канал, содержащий рассол высокого давления, обозначен цифрой 16. Насыщенный пар высокого давления в канале 15 подается на ступень высокого давления 18 паровой турбины 17, непосредственно соединенной с генератором 19 так, что расширение пара высокого давления в ступени 18 турбины приводит к действие генератор 19, вырабатывающий электрическую энергию, поступающую в энергетическую систему (не показана).

Ступень 18 турбины выпускает обедненный теплом пар высокого давления в сепаратор влаги 20, где вода в отработавшем паре отделяется от пара, производя высушенный пар при промежуточном давлении. Вода из сепаратора влаги сливается в поддон второй испарительной камеры 21, соединенной с магистралью 16 первого сепаратора 14, осуществляющей испарение жидкости в пар при температуре и давлении, согласующимися с температурой и давлением высушенного пара, полученного от сепаратора влаги 2. Пар, полученный в камере 21, объединяется с паром, полученным в сепараторе 20, и направляется в ступень 22 промежуточного давления турбогенератора 17. Пар, поступивший на ступень 22, расширяется, приводя в действие генератор 19 и вырабатывая обедненный теплом пар на выходе из ступени 22.

Турбогенератор 17 включает ступень низкого давления, работающую аналогично промежуточной ступени 22. Таким образом, пар, выходящий из ступени 22, направляется в сепаратор влаги 23, в котором вода в отработавшем паре отделяется от пара, производя высушенный пар низкого давления. Вода из сепаратора влаги сливается в отстойник третьей испарительной камеры 24, соединенной с магистралью 25, которая в свою очередь соединена с отстойником второй камеры 21, осуществляя испарение содержащегося в нем рассола в пар при температуре и давлении, согласующихся с температурой и давлением высушенного пара, полученного в сепараторе влаги 23. Пар, полученный в камере 24, комбинируется с паром, полученным в сепараторе 23, и направляется на ступень 26 низкого давления турбогенератора 17. Пар, поступивший на ступень 26, расширяется, приводя в действие генератор 19 и вырабатывая обедненный теплом пар в магистрали 27 на выходе из ступени 26.

Магистраль 27 соединена с конденсатором 28, показанным как охлаждаемое воздухом устройство, который конденсирует отработавший газ, вырабатывая конденсат, который нагнетается насосом 29 в отводящую скважину. В эту же скважину направляются концентрированный рассол из отстойника испарительного сепаратора 24, а также неконденсирующийся газ, удаленный из конденсатора 28, который был сжат до его подачи в скважину.

Наличие сепараторов влаги 20 и 21 между ступенями турбогенератора поддерживает влажность пара на входе и в каждую ступень на приемлемых уровнях и приводит к большей экономичности турбины. Кроме того, мгновенное парообразование воды между ступенями допускает максимальное охлаждение рабочей жидкости /воды/, обеспечивая максимальное извлечение физического тепла. Более того, использование конденсата из сепаратора влаги в испарительных камерах служит для разбавления рассола в отстойниках этих сепараторов, уменьшая тем самым концентрацию и предотвращая осаждение, когда рассол охлаждается. Это также влияет на оптимально низкие температуры для испарения. Без добавления рассола такие низкие температуры не могли быть достигнуты.

Модификация изобретения, показанная на фиг. 2, обеспечивает перегрев пара между ступенями. Как показано в варианте 10A, часть пара высокого давления, полученная в первом сепараторе испарения, шунтирует ступень 18A высокого давления и направляется в перегреватель 35, где пар отдает как скрытую, так и физическую теплоту прежде, чем он поступит в отстойник второго сепаратора испарения 21A.

После расширение пара в ступени 18A высокого давления и приведения в действие генератора 19A обедненный теплом пар высокого давления направляется в сепаратор влаги 20A, где вода извлекается из пара, производя высушенный пар низкого давления, который комбинируется с паром, полученным в камере 21A, который комбинируется с рассолом из отстойника испарительного сепаратора 14A. Вместо того чтобы направить пар на ступень 26A низкого давления, он сначала перегревается в перегревателе 35, когда пар высокого давления охлаждается в перегревателе.

В варианте на фиг. 3 10B обозначает паросиловую установку замкнутого цикла, в которой геотермальная жидкость высокого давления находится не в прямом контакте с рабочей жидкостью (водой). Как показано, геотермальная жидкость высокого давления из эксплуатационной скважины 12B подается неконтактному теплообменнику 40, который функционирует как испаритель для подаваемой в него подогретой воды. После испарения воды в теплообменнике охлажденная геотермальная жидкость направляется в теплообменник 41, функционирующий как подогреватель для подаваемого в него конденсата. Еще более охлажденная геотермальная текучая среда, большей частью жидкость, возвращается в отводящую скважину 30B. Поскольку давление геотермальной жидкости поддерживается на относительно высоком уровне, то осаждение минералов из жидкости будет сведено до минимума и не требуется создания дополнительного давления для ее впрыскивания в землю.

Если количество неконденсирующихся газов, включая сероводород, в геотермальной жидкости является настолько большим, что ухудшается теплопередача в испарители 40, то эти газы могут быть удалены из испарителя и объединены с охлажденной жидкой геотермальной жидкостью, покидающей подогреватель 41, прежде чем смесь поступит в отводящую скважину 30B. Эта операция облегчается благодаря повышенной растворимости неконденсирующихся газов в охлажденной жидкой геотермальной текучей среде, выходящей из подогревателя. Кроме того, высокое давление неконденсирующихся газов в испарителе облегчает извлечение с минимальным количеством уносимого геотермального пара.

Пар, вырабатываемый в испарителе 40, подается на ступень 18B высокого давления турбогенератора 17B, где он расширяется, приводя в действие генератор 19B, соединенный с энергетической системой (не показана). Пар, выходящий из ступени 18B, поступает в сепаратор влаги 20B, который разделяет влажный пар на жидкость и сухой пар под промежуточным давлением. Жидкая составляющая из этого сепаратора сливается в отстойник испарительной камеры 21B, в которую подается подогретая вода из подогревателя 41. Вода в испарительной камере 21B испаряется в пар при температуре и давлении, сопоставимых с температурой и давлением пара, получаемого в сепараторе 20B. Пар, полученный в камере 21B и сепараторе 20B, объединяется и подается на промежуточную ступень 22B турбогенератора 17B, где расширяется, приводя в действие генератор 19B.

Пар, выходящий из ступени 22B, подается в сепаратор влаги 22B, который разделяет влажный пар на жидкую составляющую и сухой пар при низком давлении. Жидкая составляющая из этого сепаратора подается в отстойник испарительной камеры 24B, в которую поступает также вода из отстойника камеры 21В. Вода в камере 24B испаряется в пар при температуре и давлении, аналогичных температуре и давлению пара, получаемого в сепараторе 23B. Пар, полученный в сепараторе 23B и камере 24B, смешивается и подается в ступень 26B низкого давления турбогенератора 17B, где расширяется, приводя в действие генератор 19B.

Пар, удаленный из ступени 28B, конденсируется в воздухоохлаждаемом конденсаторе 28B и конденсат сжимается до давления жидкости, находящейся в отстойнике камеры 24B, объединяется с этой жидкостью и затем возвращается в подогреватель 41. После подогревания часть воды, покидающей подогреватель 41, направляется в камеру 21B, но большая ее часть направляется в испаритель 40 для получения пара высокого давления для турбинной ступени 18B. Распределение воды из подогревателя между испарителем и камерой 21B производится так, что только достаточное количество воды подается в сепаратор, которое требуется для производства пара, аналогичного пару, получаемому в сепараторе 20B.

Предпочтительно, скорость потока воды в подогревателе 41 аналогична скорости потока геотермальной текучей среды, являющейся большей частью жидкой, в подогревателе. Это усиливает извлечение тепла из геотермальной текучей среды. Колебания в скорости потока геотермальной жидкости при температуре окружающего воздуха по сухому термометру, влияющие на работу охлаждаемого воздухом конденсатора или другие параметры, которые влияют на источник тепла или теплоприемник электростанции, могут быть приведены в соответствие за счет регулирования скорости потока воды в подогреватель 41. Количество воды, подаваемое в подогреватель 41, превышающее необходимое для уравновешивания скорости потока геотермальной жидкости в подогреватель, может отклоняться от испарительной камеры 21B. Это обеспечивает удобный способ регулирования и стабилизации работы электростанции. Воплощение 10C на фиг. 4 показывает паросиловую установку, в которой геотермальная жидкость высокого давления находится в косвенном контакте с рабочей жидкостью (водой) и осуществляется промежуточный перегрев. Как показано, геотермальная жидкость высокого давления из эксплуатационной скважины 12C подается на неконтактный теплообменник 50, функционирующий как испаритель для подаваемой в него подогретой воды. После испарения воды в теплообменнике охлажденная геотермальная жидкость направляется в теплообменник 50, функционирующий как промежуточный подогреватель для промежуточного подогревания рабочей жидкости (воды), подаваемой в него. Еще более охлажденная геотермальная жидкость затем подается в теплообменник 52, функционирующий как подогреватель рабочей жидкости (воды), и затем возвращается обратно в отводную скважину 30C. Благодаря тому что давление геотермальной жидкости поддерживается на относительно высоком уровне, то происходит небольшое осаждение минералов в жидкости, не требуется создания дополнительного давления для впрыска в землю.

Пар, выработанный в испарителе 50, направляется на ступень 18C высокого давления турбогенератора 17C, где происходит его расширение, приводя в действие генератор 19C, соединенный с энергетической системой (не показана). Пар, удаляемый из ступени 18C, направляется в сепаратор влаги 20C, который разделяет влажный пар на жидкую составляющую и сухой пар при промежуточном давлении. Жидкая составляющая этого сепаратора сливается в отстойник испарительной камеры 21C, в которую подается подогретая вода из подогревателя 52. Вода к камере 21C испаряется в пар, который комбинируется с паром, полученным в сепараторе 23C, и подается в подогреватель 51. После подогревания пар поступает на вход ступени 22C турбогенератора 17C, где расширяется, приводя в действие генератор 19C.

Пар, выходящий со ступени 22C, конденсируется в охлаждаемом воздухом конденсаторе 28C, а конденсат сжимается до давления жидкости в отстойнике сепаратора 21C, комбинируется с этой жидкостью и затем возвращается в подогреватель 52. После подогревания вода, выходящая из подогревателя 52, направляется в сепаратор 21C.

Хотя варианты, показанные на фиг. 2 и 4, являются двухступенчатыми турбогенераторами, настоящее изобретение применимо к турбогенераторам с большим числом ступеней.

Кроме того, хотя показан один генератор, который приводится в действие всеми ступенями турбины, отдельные генераторы могут быть предусмотрены для каждой ступени. Более того, хотя конденсатор показан в различных вариантах как охлаждаемый воздухом, однако в соответствии с настоящим изобретением могут использоваться конденсаторы с водяным охлаждением.

И наконец, хотя не показано, турбины Ранкина на органической жидкости, предпочтительно использующие пентан или изопентан в соответствии с окружающими условиями, могут работать в сочетании с паровыми турбинами низкого давления. В этом случае конденсатор для паровой турбины будет охлаждаться органической жидкостью. Хотя выше были описаны одноступенчатые турбины, могут использоваться параллельные ступени или турбины, если это удобно.

В вариантах на фиг. 1 и 3 описаны три ступени турбины, и это удобно, когда геотермальная жидкость имеет относительно высокое давление, например 56/25 кг/см2.

В этом случае пар, подаваемый на ступень промежуточного давления, может быть порядка 7,03 - 10,55 кг/см2, а пар, подаваемый на ступень низкого давления, порядка 1,4 - 2,8 кг/см2. Когда давление геотермальной жидкости из эксплуатационной скважины ниже, то могут использоваться только ступени промежуточного и низкого давления.

Могут использоваться подогреватели на ископаемом топливе для перегревания, высушивания пара или для других целей, тем самым повышая эффективность и возможность настоящего изобретения в различных условиях. Большинство преимуществ, упоминавшихся в связи с вариантом на фиг. 1, также применимы и к другим вариантам настоящего изобретения, представленным на других чертежах.

Полученные преимущества и улучшения, обеспеченные способом и установкой настоящего изобретения, являются очевидными из приведенного выше описания предпочтительного варианта настоящего изобретения. Однако могут быть изменения и модификации, не выходящие за область настоящего изобретения, которая определена прилагаемой формулой изобретения.

Формула изобретения

1. Устройство для производства энергии из геотермальной текучей среды высокого давления путем получения пара высокого давления и рассола высокого давления из геотермальной текучей среды и расширения пара высокого давления в ступени турбины высокого давления для получения энергии и обедненного теплом пара, отличающееся тем, что содержит а) сепаратор для разделения обедненного теплом пара, полученного в турбине высокого давления, на водную составляющую и высушенный пар,
б) источник другой жидкости при температуре выше, чем температура водной составляющей,
в) испарительный сепаратор для приема водной составляющей из указанного сепаратора и другой жидкости из источника для образования комбинированной (связанной) жидкости и для получения выпара и остаточной жидкости,
г) другую паровую турбину,
д) средства для подачи выпара и высушенного пара в другую паровую турбину, где происходит расширение, вырабатывающее энергию и другой обедненный теплом пар.

2. Устройство по п.1, отличающееся тем, что содержит
а) другой сепаратор для разделения обедненного теплом пара от другой турбины на водную составляющую и высушенный пар,
б) еще одну паровую турбину,
в) средства для подачи высушенного пара из другого сепаратора в еще одну турбину.

3. Устройство по пп. 1 и 2, отличающееся тем, что источником жидкости является рассол из геотермальной текучей среды.

4. Устройство по п.1, отличающееся тем, что содержит
а) другой сепаратор для разделения обедненного теплом пара из другой турбины на водную составляющую и высушенный пар,
б) другой испарительный сепаратор для приема водной составляющей из другого сепаратора и остаточной жидкости из испарительного сепаратора для образования другой комбинированной жидкости и получения другого выпара и другой остаточной воды,
в) еще другую паровую турбину,
г) средства для подачи выпара из другого испарительного сепаратора и высушенного пара из другого сепаратора в еще другую турбину, где происходит расширение, вырабатывающее энергию и другой обедненный теплом пар.

5. Устройство по п.4, отличающееся тем, что источником жидкости является рассол из геотермальной текучей среды.

6. Устройство по п.1, отличающееся тем, что имеется перегреватель для перегревания выпара и высушенного пара перед их подачей в другую паровую турбину.

7. Устройство по п.6, отличающееся тем, что пар высокого давления подается в перегреватель, где пар охлаждается.

8. Устройство по п.7, отличающееся тем, что охлажденный пар из перегревателя подается в расширитель.

9. Способ для производства энергии из геотермальной текучей среды высокого давления путем разделения текучей среды на пар высокого давления и рассол высокого давления и расширения пара высокого давления в турбогенераторе высокого давления для получения энергии и обедненного теплом пара, отличающийся тем, что осуществляют следующие операции:
а) отделение жидкости от обедненного теплом пара, тем самым получая высушенный обедненный теплом пар при давлении и температуре ниже, чем давление и температура пара высокого давления,
б) комбинирование отделенной таким образом жидкости с рассолом высокого давления в смесь,
в) испарение смеси для получения выпара,
г) расширение выпара и высушенного обедненного теплом пара в турбогенераторе низкого давления для получения дополнительной энергии.

10. Способ по п.9, отличающийся тем, что часть пара высокого давления используют для подогрева высушенного обедненного теплом пара и выпара перед расширением в турбогенераторе низкого давления.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к энергомашиностроению и может быть использовано для теплоснабжения на основе геотермальных источников

Изобретение относится к области энергомашиностроения и может быть использовано для теплоснабжения на основе геотермальных источников

Изобретение относится к паровым котлам, использующим тепло земных недр

Изобретение относится к области использования подземного тепла и касается устройств, использующих жидкий теплоноситель

Изобретение относится к геотермальным устройствам и может быть использовано в системах теплоснабжения и энергоснабжения населенных пунктов

Изобретение относится к выработке энергии посредством водяного пара, а точнее к модульной энергетической установке, работающей от источника геотермального пара

Изобретение относится к получению тепловой и электрической энергии и обработке отходов производства на основе использования высокотемпературных гидротермальных систем, в частности к использованию пароводяных смесей из геотермальных скважин

Изобретение относится к теплоэнергетике, в частности к паросиловым установкам, использующим теплоту геотермальных источников с повышенным солесодержанием газопароводяной смеси

Изобретение относится к теплоэнергетике, в частности к установкам, использующим теплоту геотермальных источников в виде газопароводяной смеси с повышенным солесодержанием. Предлагается турбина, в которой корпус, вал и рабочие лопатки выполнены полыми и сообщающимися между собой. При этом вершины рабочих лопаток выполнены в виде овальной формы, а толщина их стенок не превышает толщину стенки корпуса турбины. В полости корпуса турбины и рабочих лопаток проходит холодная вода, снижающая температуру их стенок, благодаря чему удается предотвратить отложения карбоната кальция на поверхности турбины. Изобретение позволяет повысить эффективность использования энергии геотермальных источников за счет исключения потерь механического и некоторого теплового потенциала геотермальных вод, а также исключения затрат на очистку геотермального теплоносителя от растворенных в нем солей жесткости. 2 ил.

Изобретение относится к строительству гидротермальных электростанций, использующих тепловую энергию в глубоких слоях недр земли. Способ строительства подземных испарительных систем в высокотемпературных слоях земной породы состоит: в создании системы испарительных полостей на конечном участке глубокой скважины методом выплавления породы плавильным агрегатом, а также в использовании установленного в зоне испарительных полостей испарительного агрегата вместо плавильного агрегата, подающего пресную или морскую воду в испарительные полости, где разбрызгиваемая на горячие поверхности полостей вода превращается в перегретый пар высокого давления и температуры, поступающий в турбогенератор, вырабатывающий электроэнергию, а после конденсации пара используемый для обогрева зданий опресненной горячей водой. Концентрированный осадок морской воды после ее испарения может служить сырьем для химической промышленности с целью выделения из него ценных редких химических элементов. Обеспечивается безотходное, безвредное производство дешевой электроэнергии, получение пресной воды из морской воды с возможностью полной автоматизации технологических процессов. 24 ил.

Изобретение относится к области превращения геотермальной энергии в электрическую энергию, когда источником тепловой энергии являются постмагматические тепловые поля. Устройство включает скважину с обсадной трубой, нижняя часть которой закрыта крышкой и является паровым котлом, который входным и выходным трубопроводами, оснащенными обратными клапанами давления, соединен с паровой турбиной, которая кинематически связана с электромашинным генератором тока. Открытый торец выходного трубопровода осесимметричен обсадной трубе, через крышку парового котла опускается до дна котла, образуя одноконтурное внутреннее пространство, а регулятор подачи рабочей жидкости установлен на входном трубопроводе и обеспечивает подачу такого количества рабочей жидкости, чтобы в нижнюю часть парового котла рабочая жидкость не поступала и она служила как перегреватель пара. Изобретение позволяет осуществить превращение геотермальной энергии в электрическую энергию независимо от наличия подземных водных источников. 4 з.п. ф-лы, 2 ил.

Изобретение относится к системам комплексного тепло- и водоснабжения с использованием геотермальных источников на площадках, имеющих два и более гидротермальных слоя

Изобретение относится к геотермальным энергетическим устройствам для холодных климатических зон

Изобретение относится к применению, по меньшей мере, двух раздельных скважин для добычи углеводородного сырья для получения геотермальной энергии

Устройство и способ для производства энергии из геотермальной текучей среды, геотермальные скважины

Наверх