Реактор для каталитического обезвреживания органических отходов, содержащих радионуклиды

 

Изобретение относится к обезвреживанию органических отходов, содержащих радионуклиды, и может найти применение на предприятиях ядерного цикла. Реактор предназначен для обезвреживания путем сжигания смешанных отходов, содержащих органические вещества, сажу, радиоактивные материалы и значительное количество воды. Реактор выполнен в виде двух коаксиально расположенных полых цилиндров с рабочим кольцевым пространством с псевдоожиженным слоем катализатора между ними, во внутренний цилиндр помещена вставка нейтронпоглощающего материала. В нижней части реактора расположены кольцевой коллектор для ввода воздуха, газораспределительная решетка, электронагреватель и устройства для ввода органических отходов, неизотермическая насадка разделяет реактор по высоте на две зоны и ограничивает свободную циркуляцию катализатора, в верхней части реактора расположены теплообменник и патрубок для вывода парогазовой смеси. Внешний корпус реактора оборудован фланцевым соединением для обеспечения доступа к теплообменнику и неизотермической насадке. В частном случае для подачи отходов в реактор перед форсункой установлен гидроциклон. Реактор удовлетворяет требованиям ядерной безопасности и при его использовании реализуется эффективный отвод тепла из реакционного объема. 3 з.п.ф-лы, 1 ил.

Изобретение относится к устройствам для обезвреживания смешанных органических радиоактивных отходов, содержащих делящиеся изотопы, например U-235 или Pu-239, путем каталитического сжигания. Изобретение также относится к устройствам для нагрева или испарения жидкостей или газов или осуществления эндотермических процессов за счет тепла, выделяющегося при каталитическом сжигании отходов. Изобретение предназначено для использования на предприятиях ядерного топливного цикла для переработки отходов растворителей, экстрагентов, масел и других отходов, загрязненных изотопами урана, плутония и продуктами деления.

Известен аппарат (Боресков Г. К., Левицкий Э.А., Исмагилов З.Р. Журн. Всесоюзн, хим.об-ва им. Д.И.Менделеева, 1984, т. 29, с. 379) для каталитического сжигания топлив и отходов различного типа, в частности загрязненных органических растворителей, жидких отходов химической промышленности, азотсодержащих отходов, радиоактивных отходов сцинтилляторов.

Известный аппарат представляет собой реактор кипящего слоя, в который загружают специально разработанные катализаторы в виде прочных сферических гранул. Реактор содержит цилиндрический корпус, в нижней части которого расположены коллектор для ввода воздуха, газораспределительная решетка, устройства для ввода топлива (или органических отходов) в слой катализатора, неизотермическую насадку, ограничивающую свободную циркуляцию катализатора и разделяющую аппарат по высоте на две зоны: нижнюю с температурой 600-750oC, обеспечивающую полное сжигание органики, и верхнюю зону, в которой расположен теплообменник, температура которой определяется условиями теплоотвода и может быть снижена до 250-300oC. В верхней части реактора расположен патрубок вывода парогазовой смеси. Известный аппарат является наиболее близким по технической сущности к заявляемому и принимается в качестве прототипа.

Задача, решаемая изобретением. Изобретение решает задачу создания производительного реактора, удовлетворяющего требованиям ядерной безопасности. Кроме того, в изобретении реализуется эффективный отвод тепла из реакционного объема.

Поставленные задачи достигаются тем, что реактор выполнен в виде двух коаксиально расположенных полых цилиндров с рабочим кольцевым пространством между их стенками. Кроме того, для уменьшения опасности возникновения самоподдерживающейся цепной реакции во внутренний цилиндр может помещаться вставка из нейтронпоглощающего материала, например карбида бора. Это позволяет увеличить ширину реакционного пространства и тем самым уменьшить габариты (внешний диаметр) реактора.

Для уменьшения габаритов реактора необходимо сжигать отходы при минимальном избытке воздуха: 100-120% от стехиометрического количества. Вследствие того, что в этих условиях адиабатический разогрев достигает 2100oC, для снижения температуры псевдоожиженного слоя до рабочих температур 600-750oC необходима реализация эффективного отвода тепла из реакционного пространства.

Для эффективного отвода тепла из слоя катализатора в верхнюю часть псевдоожиженного слоя катализатора помещен трубчатый теплообменник, в который подают воду. Избыточное тепло отводится за счет нагрева или испарения воды. Перед теплообменником установлена неизотермическая насадка, ограничивающая свободную циркуляцию катализатора и разделяющая аппарат по высоте на две зоны: нижнюю с температурой 600-750oC, обеспечивающей полное сжигание органики, и верхнюю зону, в которой расположен теплообменник, температура которой определяется условиям теплоотвода и может быть снижена до 250-400oC. Снижение температуры обеспечивает уменьшение линейной скорости газов в верхней части слоя и, следовательно, уменьшает унос катализатора с дымовыми газами.

На чертеже схематично изображено продольное сечение реактора.

Реактор образован двумя цилиндрическими корпусами 1 и 2, соединенными между собой фланцами 16, 17, 20, 21, 23 и 24. Реакционное пространство реактора заключено между внутренней 2 и наружной 1 цилиндрическими обечайками реактора.

Снизу реактор оборудован коллектором для подачи воздуха, включающим корпус 25, сильфон 13, кольцевой коллектор 10, диффузор 22, фланцы для крепления коллектора 14, 15, 20, 21, патрубки для ввода воздуха 18, 19. Между фланцами 14, 15 закреплена кольцевая газораспределительная решетка 12. Выше размещаются штуцер для выгрузки катализатора из аппарата 6, форсунки для подачи отходов 3, термопарные карманы 4, расположенные по окружности кольцевого сечения реактора. Для подачи жидких отходов, содержащих твердые примеси, перед форсункой установлен гидроциклон 26. Жидкая фаза из верхней части гидроциклона поступает на пневматические форсунки 3, а отделенная твердая фаза из нижней части гидроциклона поступает в реактор на переработку через узлы ввода 29, например, с помощью шнековой подачи. Такая конструкция предотвращает забивание форсунок твердыми частицами.

Реактор разделен по высоте на две зоны: зону тепловыделения (нижнюю) и зону теплосъема (верхнюю), между которыми расположена неизотермическая насадка 5 - объемная конструкция из проволочных решеток. В верхней зоне реактора расположена теплообменная секция 7, состоящая из нескольких рядов труб в виде колец, по которым прокачивают воду. В верхней части реактор оборудован штуцером для загрузки катализатора 9 и патрубками для отвода дымовых газов 11. Применение двух (или более) патрубков обеспечивает более равномерное распределение газового потока по сечению реактора и увеличивает однородность псевдоожиженного слоя. Для обеспечения доступа к теплообменнику и неизотермической насадке внешний корпус реактора разрывается фланцевым соединением, расположенным по окружности реактора 16, 17. Для уменьшения тепловых потерь и снижения температуры внешней поверхности реактора на внешний цилиндр реактора установлена теплоизоляция 8. Для уменьшения опасности возникновения самоподдерживающейся цепной реакции во внутренний цилиндр реактора может помещаться вставка 27 из нейтронпоглощающего материала, например карбида бора. Эта вставка позволяет увеличить ширину реакционного пространства и тем самым уменьшить габариты реактора. Во внутреннем цилиндре также размещен кольцевой или цилиндрический реактор 28 с сотовым катализатором.

Реактор работает следующим образом. В слой катализатора, предварительно разогретый горячим воздухом до 300oC с помощью выносного электронагревателя, подают воздух и дизельное топливо в соотношении, близком к стехиометрическому. В течение 10-20 минут происходит рост температуры в слое катализатора. При достижении температуры 600-700oC расход топлива снижают и температурный режим стабилизируется на уровне 700oC. Реактор работает в течение 10-15 минут до прогрева реактора и установления стабильного режима.

После стабилизации температурного режима слоя катализатора дизельное топливо заменяют на органические отходы, и реактор выводят на рабочий режим. Температура в зоне сжигания в рабочем режиме должна быть на уровне 600-750oC, в зоне теплосъема - 200-400oC. Дымовые газы из реактора направляются в систему пылеотделения и охлаждения. Степень окисления органических отходов контролируют анализом дымовых газов на содержание углеводородов и CO.

Геометрическая конфигурация и размеры реакционной зоны реактора исключают возможность возникновения самоподдерживающейся цепной реакции при накоплении делящихся изотопов урана и плутония в реакционном объеме, которое может происходить, в частности, в результате накопления этих радионуклидов в пористой структуре катализатора или при осмолении и накоплении осмоленных отходов в застойных зонах в результате нарушения режима псевдоожижения или значительной дезактивации катализатора.

Формула изобретения

1. Реактор для обезвреживания органических отходов, содержащих радионуклиды, путем сжигания отходов в кипящем слое катализатора, включающий вертикальный цилиндрический корпус, в нижней части которого расположены коллектор для ввода воздуха и газораспределительная решетка, снабженный теплообменником, размещенным в верхней части слоя катализатора, неизотермической насадкой, устройствами для ввода органических отходов и патрубками для вывода продуктов сжигания, отличающийся тем, что корпус реактора выполнен в виде двух коаксиально расположенных цилиндров так, что рабочее пространство с кипящим слоем катализатора расположено между стенками цилиндров, во внутренний цилиндр помещена вставка из нейтронпоглощающего материала.

2. Реактор по п.1, отличающийся тем, что вставка выполнена из карбида бора.

3. Реактор по пп.1 и 2, отличающийся тем, что патрубки для вывода продуктов сжигания установлены диаметрально противоположно.

4. Реактор по пп.1 - 3, отличающийся тем, что для подачи отходов в реактор перед форсункой установлен гидроциклон.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к ядерной энергетике и может быть использовано при снятии с эксплуатации реакторов на быстрых нейтронах

Изобретение относится к области химической технологии, конкретно к атомной экологии и может быть использовано при переработке жидких радиоактивных отходов (ЖРО), образующихся при эксплуатации различных атомно-энергетических установок (АЭУ) на АЭС, транспортных средствах (атомных ледоколов, подводных лодок, плавучих АЭС)

Изобретение относится к области переработки жидких радиоактивных отходов, образующихся при регенерации облученного ядерного топлива (ОЯТ) и может быть использовано в радиохимической промышленности

Изобретение относится к области обработки жидких радиоактивных отходов, образующих при регенерации облученного ядерного топлива, а именно к способам подготовки жидких радиоактивных отходов к утилизации

Изобретение относится к охране окружающей среде, а точнее к очистке и концентрированию жидких радиоактивных отходов (ЖРО)
Изобретение относится к захоронению радиоактивных веществ, касается создания изолирующих радионуклиды барьеров и может применяться также в системах аварийной локализации радионуклидов

Изобретение относится к тепломассообменным аппаратам для проведения процессов в кипящем слое и может быть использовано в кремнийорганической промышленности для получения органохлорсиланов прямым синтезом из кремнийсодержащей контактной массы под воздействием хлористого алкила в кипящем слое, а также в других отраслях промышленности для проведения процессов с использованием кипящего слоя

Изобретение относится к области отделения твердых частиц от газов и, в частности, к циркуляционному реактору с псевдоожиженным слоем, в котором центробежный сепаратор для отделения твердых частиц от газов содержит вихревую камеру, которая снабжена по меньшей мере одним входом для газов, которые необходимо очистить, расположенным в его верхней секции по меньшей мере одним выходом для очищенных газов, расположенным в его верхней или нижней секциях, и по меньшей мере одним выходом для отделенных частиц, расположенным в его нижней секции

Изобретение относится к области химического машиностроения и может быть использовано для разделения катализатора и продуктов реакции

Изобретение относится к способам осуществления химических процессов и может быть использовано при проведении газофазных химических реакций в присутствии гетерогенных катализаторов

Изобретение относится к способу и устройству для обработки горячих газов, получаемых в высокотемпературных процессах в циркуляционном реакторе с псевдоожиженным слоем, причем реактор содержит: смесительную камеру, в которой горячие технологические газы смешивают с твердыми частицами, образующими циркулирующую массу для формирования газовой взвеси; сепаратор частиц для отделения твердых частиц от обработанных технологических газов; средство для подачи горячих технологических газов в смесительную камеру; вертикальную трубу или канал, расположенный в верхней части смесительной камеры для подачи газовой взвеси из смесительной камеры в сепаратор частиц; выходной канал газа для удаления обработанных технологических газов из сепаратора частиц и обратный канал частиц возвращения твердых частиц, отделенных в сепараторе частиц, в смесительную камеру

Изобретение относится к области химического машиностроения и может быть использовано в прямоточных реакторах с восходящим потоком катализатора, преимущественно для каталитического крекинга

Изобретение относится к области химической промышленности, к производству специализированной технологической техники, используемой в технологических линиях производства аммиака
Наверх