Способ измерения емкости с потерями

 

Использование: изобретение относится к электроизмерительной технике и может быть использовано для измерения емкости и эквивалентной проводимости потерь, в частности для измерения комплексной диэлектрической проницаемости изоляционных материалов. Технический результат - высокая точность измерения, достигается за счет применения фазового резонанса, частота которого может быть измерена современными фазометрами точнее, чем в случае амплитудного резонанса. Кроме того, резонансное сопротивление при фазовом резонансе выражается через параметры контура более простой формулой, чем при амплитудном резонансе, что позволяет получить точные формулы для измеряемых параметров. В случае амплитудного резонанса аналогичные точные формулы напрямую не получаются, здесь необходимо вводить ограничительные условия, понижающие точность измерения. 1 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для измерения емкости и эквивалентной проводимости потерь, в частности, для измерения комплексной диэлектрической проницаемости изоляционных материалов.

Известно несколько способов измерения емкости, основанных на резонансных свойствах колебательного контура (Полулях К.С. Резонансные методы измерений. - М. : Энергия, 1980. - 120 с.), при этом используется амплитудный резонанс идеализированного (последовательного или параллельного) контура. Недостаток способов - погрешность за счет идеализации, кроме того, при незначительном усложнении контура, которое всегда возникает в реальных случаях, соотношения, описывающие амплитудный резонанс, заметно усложняются, что приводит к дополнительным погрешностям.

Наиболее близким по технической сущности (прототипом) к предлагаемому изобретению является способ (авт. св. СССР N 1647457, МКИ G 01 R 27/26, Б.И. N 17, 1991 г.), основанный на перестройке колебательного контура образцовым конденсатором до крайних пределов, в которых контур вырождается в последовательный и параллельный, при этом рабочая точка оказывается посередине измерительной характеристики, где ее крутизна максимальна. Недостаток - способ предназначен только для измерения емкости и непригоден для измерения эквивалентной проводимости потерь, кроме того, крайние точки используемого участка измерительной характеристики определяются не точно, т.к. в них контур не является строго последовательным и параллельным (лишь приближается по свойствам к этим идеальным моделям), а это приводит к дополнительным погрешностям измерения.

Задача, на решение которой направлен заявляемый способ, заключается в повышении точности измерения емкости и эквивалентной проводимости потерь конденсаторов, в том числе и низкодобротных. Способ основан на резонансном методе измерения, однако, при этом используется не амплитудный, а фазовый резонанс, который, во-первых, можно зафиксировать современными фазометрами с большей точностью, чем амплитудный, а, во-вторых, расчетные формулы получаются проще, чем при амплитудном резонансе, это дает возможность разрешить их относительно измеряемых параметров точно, без введения ограничительных допущений, характерных для амплитудного резонанса, что также приводит к увеличению точности. Способ проиллюстрирован на чертеже, для чего использовано известное устройство - колебательный контур RLCxGx.

Здесь измеряемый конденсатор представлен в виде эквивалентной цепи - параллельного соединения емкости Cx и активной проводимости Gx. От генератора 1 подается синусоидальное напряжение на контур, при этом амплитуда входного тока измеряется амперметром 2, амплитуда входного напряжения - вольтметром 3, фазовый сдвиг между ними - фазометром 4, на который подаются входное напряжение и напряжение с сопротивления 5, пропорциональное входному току, контур состоит из сопротивления R (5), индуктивности L (6) и клемм 7 и 8, к которым подсоединяется измеряемый конденсатор CxGx- Сопротивление R и индуктивность L заранее известны.

Частота генератора изменяется до тех пор, пока не достигнет значения ф частоты фазового резонанса контура. При этом по амперметру определяется амплитуда Im входного тока, по вольтметру - амплитуда Um входного напряжения, а фазометр зафиксирует сдвиг фаз, равный нулю (признак фазового резонанса). После этого емкость Cx и эквивалентная проводимость Gx конденсатора вычисляются по формулам Для вывода этих формул на чертеже представлена схема использованного в изобретении резонансного контура, возмущаемого синусоидальным напряжением, по методу комплексных амплитуд представленного как обычно также представлен и входной ток здесь комплексные амплитуды входных напряжения и тока, и -соответствующие начальные фазы. В общем случае входное сопротивление но при фазовом резонансе выполняется условие = , при этом сопротивление является действительным По методу комплексных амплитуд легко находится входное сопротивление контура На частоте фазового резонанса мнимая часть комплексного сопротивления равна нулю, т.е.,
тогда входное сопротивление является чисто активным и равно

Составив из (2) и (3) систему уравнений и разрешив ее относительно Cx и Gx получим соотношения (1).


Формула изобретения

Способ измерения емкости и потерь конденсатора, заключающийся в том, что к контуру, состоящему из последовательно соединенных измеряемого конденсатора и заранее известных индуктивности и активного сопротивления, подключают перестраиваемый генератор синусоидального напряжения, отличающийся тем, что входное напряжение контура и напряжение, пропорциональное входному току, снимаемое с сопротивления, подают на фазометр, изменяют частоту генератора до тех пор, пока фазометр не покажет сдвиг фаз, равный нулю, при этом круговая частота генератора есть частота фазового резонанса контура, измеряют амплитуду входного напряжения и входного тока, а искомые емкость Cx и активную проводимость Gx вычисляют по формулам
CX = L/(2ФL2+(Um/Im-R)2),
GX = (Um/Im-R)/2ФL2+(Um/Im-R)2),
где L - индуктивность контура;
R - последовательное с индуктивностью активное сопротивление контура;
Ф - частота фазового резонанса;
Um - амплитуда входного напряжения контура;
Im - амплитуда входного тока контура.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для аналого-цифрового преобразования

Изобретение относится к измерительной технике сверхвысоких частот

Изобретение относится к измерительной схеме, обеспечивающей выходной сигнал, являющийся функцией входного сигнала

Изобретение относится к области измерительной техники, а именно к резонансному способу измерения малой емкости на высоких частотах

Изобретение относится к области электрических измерений и может найти применение при проектировании аппаратуры, предназначенной для измерения индуктивности

Изобретение относится к измерению диэлектрической проницаемости диэлектрического вещества

Изобретение относится к электроизмерительной технике и может быть использовано при измерении тангенса угла диэлектрических потерь твердых изоляционных материалов, жидких диэлектриков, например, трансформаторного масла

Изобретение относится к способам и устройству для передачи электромагнитных сигналов в землю через конденсатор

Изобретение относится к измерению электрических величин, в частности емкости

Изобретение относится к электронному приборостроению и может быть использовано для контроля и измерения диэлектрических параметров различных сред

Изобретение относится к области электротехники, в частности к устройствам компенсации емкостных токов однофазного замыкания на землю в электрических сетях с изолированной нейтралью напряжением 6 - 35 кВ, и может быть использовано для точного измерения емкости фаз сети на землю для последующей резонансной настройки дугогасящих реакторов

Изобретение относится к области контрольно-измерительной техники, в частности к преобразующим устройствам емкостных датчиков съема информации, и может использоваться для построения различных измерительных устройств

Изобретение относится к измерительной технике и может быть использовано в средствах для измерения электрической емкости преобразователей неэлектрических величин

Изобретение относится к автоматике и вычислительной технике, а именно к автоматизации измерений температуры сред

Изобретение относится к способам определения параметров многофазных электропечей переменного тока, конкретнее, к способам определения параметров индуктивного взаимодействия между фазами многоэлектродных дуговых электропечей переменного тока и может использоваться в системах автоматического контроля и управления электрическим режимом работы электропечей, применяемых в черной, цветной металлургии и химической промышленности

Изобретение относится к физическим методам измерения магнитных характеристик вещества, включая высокие температурные интервалы (до 1600°С)

Изобретение относится к измерительной технике и может быть использовано при производстве высокомолекулярных соединений, а также для прогнозирования измерения физических свойств полимеров при различных условиях эксплуатации

Изобретение относится к области измерительной техники и предназначено для преобразования емкости с заземленным электродом при возможном наличии паразитного шунтирующего активного сопротивления в напряжение

Изобретение относится к области измерительной техники, а именно к резонансному способу измерения емкости на высоких частотах
Наверх