Способ сжатия воздушно-топливной смеси и использования горячих газов высокого давления в двигателе внутреннего сгорания

 

Изобретение относится к двигателестроению, а именно к двигателям внутреннего сгорания. В двигателе внутреннего сгорания применен пирамидальный двухцилиндровый поршень, рабочий поршень которого имеет уменьшенный диаметр и находится в цилиндре с соответственно уменьшенным рабочим объемом, половина которого меньше объема камеры сгорания, и двигатель работает в соответствии с новым способом сжатия воздушно-топливной смеси и использования горячих газов высокого давления в двигателе, который отличается тем, что сжатие воздушно-топливной смеси в камере сгорания создают в основном компрессором, а также рабочим поршнем, находящимся в цилиндре с рабочим объемом, половина которого меньше объема камеры сгорания, а горячие газы высокого давления воздействуют на рабочий поршень в цилиндре уменьшенного диаметра с рабочим объемом, половина которого меньше объема камеры сгорания. В результате чего и достигается экономия топлива. 2 ил.

Изобретение относится к двигателестроению, а именно к двигателям внутреннего сгорания.

Известен двигатель внутреннего сгорания, содержащий картер, коленчатый вал, камеру сгорания, впускной клапан воздушно-топливной смеси в камеру сгорания, впускной продувочный клапан сжатого воздуха, выпускной клапан, свечу зажигания, цилиндры с двухцилиндровым поршнем /патент США N 1722201, F 02 В 33/14, 1928/.

В этом изобретении описан и способ сжатия воздушно-топливной смеси в камере сгорания поршнем с помощью компрессора, объем которого разграничивается от объема камеры сгорания. Это изобретение выбрано в качестве прототипа.

Недостатком изобретения является неэффективный способ использования горячих газов высокого давления.

В прототипе воспламенение воздушно-топливной смеси в камере сгорания происходит сразу после процесса сжатия воздушно-топливной смеси до максимального значения, что приводит к образованию горячих газов максимального давления. В этот момент поршень давит на коленчатый вал через шатун, имея минимальный рычаг воздействия, так как колено коленчатого вала и шатун в этот момент находятся практически почти на одной линии.

После прохождения четверти круга коленчатым валом из внутренней /верхней/ мертвой точки /ВМТ/ к наружной /нижней/ мертвой точке /НМТ/, шатун имеет максимальный рычаг воздействия на колено коленчатого вала, но в это время поршень прошел половину своего пути S. Объем камеры сгорания Vc увеличился на рабочего объема цилиндра. И объем увеличенной камеры сгорания Va стал равен: то есть в несколько раз больше, так как половина рабочего объема цилиндра в несколько раз больше объема камеры сгорания.

Пропорционально увеличенному объему, во столько же раз уменьшилось давление газов на поршень. Если обобщить вышесказанное, можно сделать вывод, что прототип работает по принципу: есть максимальное давление газов на поршень - шатун имеет маленький рычаг воздействия на колено коленчатого вала, появился у шатуна максимальный рычаг воздействия на колено коленчатого вала - давление газов на поршень уменьшилось в несколько раз. Что неэффективно и ведет к перерасходу топлива.

Задачей изобретения является более эффективное использование горячих газов высокого давления, экономия топлива и увеличение мощности двигателя.

Поставленная задача решается за счет того, что необходимую /расчетную/ величину степени сжатия воздушно-топливной смеси в камере сгорания создают в основном компрессором, а также поршнем, находящимся в цилиндре, половина рабочего объема которого меньше объема камеры сгорания, а горячие газы высокого давления воздействуют на поршень только в цилиндре, половина рабочего объема которого меньше объема камеры сгорания.

В заявленном изобретении работает эффективная система использования газов высокого давления, полученных в результате сгорания топлива, что приводит к многократной экономии топлива.

Двигатель внутреннего сгорания изображен на чертеже: на фиг. 1 - двигатель внутреннего сгорания с пирамидальным поршнем, пирамидальный поршень находится в положении ВМТ.

На фиг. 2 - двигатель внутреннего сгорания с пирамидальным поршнем, пирамидальный поршень находится в положении из ВМТ к НМТ.

Двухцилиндровый поршень имеет название пирамидальный, так как он состоит из двух поршней, находящихся в двух цилиндрах, поршни имеют разные диаметры, выполняют разные функции, но представляют собой двухцилиндровый поршень, в устройстве которого соблюден принцип построения пирамиды.

Двигатель внутреннего сгорания содержит: картер 1, цилиндр 2 компрессора, впускной продувочный клапан 3 сжатого воздуха и выпускной продувочный клапан 4, головку 5 цилиндра, пирамидальный поршень 6, представляющий собой одно целое, но состоящий из двух основных частей - "пальчикового" поршня 7, который является рабочей частью пирамидального поршня 6, на днище которого воздействуют горячие газы высокого давления, и поршня 3 компрессора - стабилизатора хода пирамидального поршня 6, впускной клапан 9 воздушно-топливной смеси в камеру 10 компрессора, канал 11 поступления сжатой воздушно-топливной смеси из камеры 10 компрессора в камеру 12 сгорания, поршневые кольца 13 "пальчикового" поршня 7, поршневые кольца 14 поршня 8 компрессора - стабилизатора хода, сальник 15, расположенный вокруг "пальчикового" поршня 7, разграничивающий объем цилиндра 21 и объем цилиндра 2 компрессора, отвод 16 для газов, частично проникающих из камеры 12 сгорания через поршневые кольца 13 "пальчикового" поршня 7, находящийся в цилиндре 21, между сальником 15 и НМТ поршневых колец 13 "пальчикового" поршня 7, коленчатый вал 17, соединенный с шатуном 18, впускной клапан 19 сжатой воздушно-топливной смеси в камеру 12 сгорания из камеры 10 компрессора, свечу 20 зажигания, цилиндр 21.

Поршень 7 выполнен "пальчиковым" и имеет уменьшенный диаметр, находится в соответствующем цилиндре 21 с уменьшенным диаметром и с соответственно уменьшенным рабочим объемом, который не позволяет самостоятельно создать необходимую /расчетную/ величину степени сжатия воздушно-топливной смеси в камере сгорания.

Двигатель внутреннего сгорания работает в двухтактном режиме.

При движении пирамидального поршня 6 из ВМТ к НМТ открывается впускной клапан 9, и воздушно-топливная смесь поступает в камеру 10 поршня 6 компрессора - стабилизатора хода, клапаны 3, 4, 19 закрыты. При подходе пирамидального поршня 6 к НМТ открывается выпускной продувочный клапан 4 и следом открывается впускной продувочный клапан 3 сжатого воздуха, продувающие камеру 12 сгорания сжатым воздухом, для ускорения процесса очистки камеры 12 сгорания. Во время прохождения пирамидальным поршнем 6 НМТ закрывается впускной клапан 3 воздушно-топливной смеси в камеру 10 компрессора, следом закрываются продувочные клапаны 3 и 4, после чего открывается впускной клапан 19, через который в очищенную камеру 12 сгорания поступает сжатая воздушно-топливная смесь из камеры 10 поршня 8 компрессора, через канал 11 поступления сжатой воздушно-топливной смеси.

Сжатие воздушно-топливной смеси до необходимой /расчетной/ величины степени сжатия воздушно-топливной смеси в камере 12 сгорания создается в основном - больше половины необходимой /расчетной/ величины степени сжатия, поршнем 8 компрессором - стабилизатором хода и частично - меньше половины необходимой /расчетной/ величины степени сжатия, "пальчиковым" поршнем 7 при движении пирамидального поршня 6 из НМТ к ВМТ.

При достижении пирамидальным поршнем 6 ВМТ закрывается впускной клапан 19 сжатой воздушно-топливной смеси в камеру 12 сгорания и в начале движения пирамидального поршня 6 к НМТ происходит воспламенение и сгорание воздушно-топливной смеси. Горячие газы высокого давления начинают давить на "пальчиковый" поршень 7, и весь пирамидальный поршень 6 продолжает движение к НМТ. Открывается впускной клапан 9 воздушно-топливной смеси в камеру 10 поршня 8 компрессора, клапаны 3, 4, 19 закрыты. Во время прохождения "пальчиковым" поршнем 7 второй половины пути из ВМТ к НМТ, при подходе к НМТ открывается выпускной продувочный клапан 4 и следом открывается впускной продувочный клапан 3 сжатого воздуха, продувающие камеру 12 сгорания сжатым воздухом, для ускорения процесса очистки камеры 12 сгорания. Продолжается новый рабочий цикл.

Поступательное движение пирамидального поршня 6 через шатун 18 преобразуется во вращательное движение коленчатого вала 17, расположенного в картере 1. Воспламенение и сгорание воздушно- топливной смеси в камере 12 сгорания происходит сразу после прохождения пирамидальным поршнем 6 ВМТ. То есть практически в состоянии ее максимального сжатия, что приводит к образованию горячих газов максимального давления. В этот момент пирамидальный поршень 6 давит на коленчатый вал 17 через шатун 18, имея минимальный рычаг воздействия, так как колено коленчатого вала 17 и шатун 18 в этот момент находятся практически почти на одной линии.

После прохождения четверти круга коленчатым валом 17 из ВМТ к НМТ шатун 18 имеет максимальный рычаг воздействия на колено коленчатого вала 17. Но в это время "пальчиковый" поршень 7 прошел половину своего пути S. Объем камеры Vc сгорания увеличился на рабочего объема цилиндра. И объем увеличенной, на половину рабочего объема цилиндра, камеры сгорания Va стал равен . Вследствие того что цилиндр имеет маленький диаметр и соответственно маленький рабочий объем Vh, объем увеличенной, на половину рабочего объема цилиндра, камеры сгорания Va возрастет на 5% - 10% относительно объема камеры сгорания Vc, то есть половина рабочего объема цилиндра меньше объема камеры сгорания Vc. Поэтому, пропорционально увеличенному объему, на 5% - 10% уменьшится давление газов на поршень.

Если обобщить вышесказанное, можно сделать вывод, что двигатель внутреннего сгорания с поршнем уменьшенного диаметра, находящимся в цилиндре уменьшенного диаметра с соответственно уменьшенным рабочим объемом, работает по принципу: есть максимальное давление на поршень - шатун имеет маленький рычаг воздействия на колено коленчатого вала, появился у шатуна максимальный рычаг воздействия на колено коленчатого вала - давление газов на поршень также близко к максимальному.

При использовании в двигателе внутреннего сгорания цилиндра уменьшенного диаметра, за счет чего цилиндр имеет уменьшенный рабочий объем, давление газов падает меньше на единицу пройденного поршнем пути из ВМТ к НМТ, чем в обычном двигателе, что приводит к более эффективному использованию горячих газов высокого давления и к экономии топлива, которое расходуется для получения этих газов.

Двигатель внутреннего сгорания, отличающийся тем, что пирамидальный поршень 6 давит на коленчатый вал 17 через шатун 18 давлением, близким к максимальному, практически от момента воспламенения воздушно-топливной смеси до момента открытия клапанов 4, 3, продувки, то есть постоянное давление, близкое к максимальному, воздействует на коленчатый вал 17 через шатун 18 практически на всем пути пирамидального поршня 6 из ВМТ к НМТ, благодаря тому, что необходимую /расчетную/ величину степени сжатия воздушно-топливной смеси в камере сгорания, создают в основном компрессором, а также поршнем, находящимся в цилиндре, половина рабочего объема которого меньше объема камеры сгорания, а горячие газы высокого давления, образовавшиеся в результате сгорания сжатой воздушно-топливной смеси, воздействуют на поршень в цилиндре, половина рабочего объема которого меньше объема камеры сгорания.

Формула изобретения

Способ сжатия воздушно-топливной смеси и использования горячих газов высокого давления, которые, распространяясь, воздействуют на поршень, полученных в результате сгорания сжатой воздушно-топливной смеси в камере сгорания после проведения процесса сжатия воздушно-топливной смеси в камере сгорания поршнем и поршнем компрессором-стабилизатором хода до необходимой величины степени сжатия воздушно-топливной смеси, отличающийся тем, что сжатие воздушно-топливной смеси в камере сгорания создают в основном компрессором, а также поршнем, находящимся в цилиндре с рабочим объемом, половина которого меньше объема камеры сгорания, а горячие газы высокого давления воздействуют на поршень в цилиндре с рабочим объемом, половина которого меньше объема камеры сгорания.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к двухтактным поршневым двигателям внутреннего сгорания

Изобретение относится к машиностроению, в частности к двигателестроению, а именно к двигателям внутреннего сгорания, в которых поршень двигателя и поршень нагнетателя выполнены в виде одного ступенчатого поршня

Изобретение относится к двигателестроению и касается усовершенствования бесшатунных двигателей внутреннего сгорания ДВС

Изобретение относится к области машиностроения, в частности к двигателям внутреннего сгорания

Изобретение относится к машиностроению, в частности, к двигателестроению, а именно к способам работы двигателей внутреннего сгорания (ДВС), утилизирующих тепло продуктов сгорания, не используемое в рабочем процессе

Изобретение относится к машиностроению, в частности к двигателестроению, а именно к способам работы двигателей внутреннего сгорания (ДВС), утилизирующих тепло, не используемое в рабочем процессе

Изобретение относится к машиностроению, в частности к двигателестроению, а именно к способам работы двигателей внутреннего сгорания (ДВС), утилизирующих тепло, не используемое в рабочем процессе

Изобретение относится к двигателестроению, а именно к двигателям внутреннего сгорания

Изобретение относится к двигателестроению, а именно к двухтактным двигателям внутреннего сгорания

Изобретение относится к двигателестроению, а именно к двухтактным двигателям внутреннего сгорания

Изобретение относится к области машиностроения и предназначено для использования в двигателестроении

Изобретение относится к двигателям внутреннего сгорания

Изобретение относится к двигателестроению, конкретнее - к аксиально-поршневым двигателям внутреннего сгорания (ДВС), с осями цилиндров, расположенными в одной плоскости с осью ведущего вала, и с пространственно-качающейся наклонной шайбой

Изобретение может быть использовано в устройствах, преобразующих один вид энергии в другой, например в двигателях внутреннего сгорания. Теплообменная металлическая поверхность (1) имеет углубления (2), заполненные материалом с теплопроводностью ниже, чем теплопроводность материала поверхности (1). Углубления (2) нанесены лазером и имеют следующие размеры - диаметр от 0,001 мм до 1 мм, глубина от 0,2 до 10 вышеуказанных диаметров. Раскрыты варианты выполнения двигателей, поверхности цилиндров, поршней и головок которых выполнены с теплообменной металлической поверхностью (1) с углублениями (2). Технический результат заключается в уменьшении потерь тепла. 3 н.п. ф-лы, 19 ил., 1 табл.

Изобретение относится к области машиностроения, в частности производства двигателей, применяемых в авиации. Сущностью изобретения является построение двигателя по схеме расположения цилиндропоршневых групп вдоль оси вращения приводного вала, с передачей энергии поступательного движения поршней к валу посредством качающегося блока карданных подвесов, связанных с цилиндрами посредством шатунов. Угол наклона аксиального блока может превышать 45 градусов, что обеспечивает высокий КПД механизма. Карданные подвесы обеспечивают отличное распределение нагрузок, минимальное сопротивление трения, высокую устойчивость аксиального устройства, большой ресурс. Цилиндропоршневые группы имеют накачивающие камеры для заполнения встроенного ресивера сжатым воздухом. Активная продувка цилиндров сжатым воздухом в момент выпуска отработанных газов позволяет обеспечить двухтактную схему работы двигателя и применять различные виды топлива, включая дизельное. Техническим результатом изобретения является аксиальный двигатель с малым миделем, высоким крутящим моментом, высокой удельной мощностью, экономичностью. 4 з.п. ф-лы, 3 ил.
Наверх