Рабочее колесо центробежного насоса

 

Рабочее колесо может быть использовано в центробежных насосах и воздуходувках. Колесо содержит ведущий, ведомый и лопаточные диски, образующие многорядные радиальные каналы. В каналах размещены лопатки, смещенные в окружном направлении. Стенки боковых каналов ближе к периферии выполнены конусными. Стенки, обращенные в противоположные стороны от плоскости симметрии колеса, выполнены пересекающимися между собой в его плоскости симметрии по окружности. Длина указанной окружности равна длине дуги всех каналов плюс толщина стенок между смежными каналами. На периферийном участке колеса выполнены периферийные радиальные каналы, размещенные в один ряд и сообщенные с радиальными каналами всех рядов через кольцевое пространство. Указанное пространство может быть разделено на секторы. Использование рабочего колеса данной конструкции повышает КПД и снижает пусковой момент за счет снижения вихревых потоков в колесе. 1 з.п. ф-лы, 10 ил.

Изобретение относится к области насосостроения, а именно к конструкциям рабочих колес центробежных насосов; может быть использовано также в центробежных воздуходувках.

Известно рабочее колесо, содержащее ведущий и ведомый диски и установленные между ними радиальные лопатки, образующие на входе колеса между дисками два или три ряда межлопаточных каналов [1].

Наиболее близким по технической сущности к предлагаемому является рабочее колесо, содержащее ведущий, ведомый и лопаточный диски, образующие радиальные каналы, в которых размещены лопатки, смещенные в окружном направлении [2].

Существенными недостатками как первой, так и второй конструкции являются: низкий КПД, обусловленный образованием вихревого потока в межлопаточных каналах; повышенный пусковой момент, вследствие расширения общей ширины каналов на периферии колеса в первом случае и того, что общая ширина на периферии всех каналов остается неизменной - во втором.

Целью изобретения являются повышение КПД и снижение пускового момента.

Указанная цель достигается описываемым рабочим колесом, включающим ведущий, ведомый и лопаточный диски, образующие радиальные каналы, в которых размещены лопатки, смещенные в окружном направлении.

Новым является то, что стенки боковых радиальных каналов ближе к периферии выполнены конусными, причем стенки, обращенные в противоположные стороны от плоскости симметрии рабочего колеса, пересекаются между собой в его плоскости симметрии по окружности, длина которой равна длине дуги всех каналов плюс толщины стенок между смежными каналами; каналы одного ряда смещены в окружном направлении от каналов смежного ряда на величину угла 360o/n (где n - число рядов) и в плоскости симметрии образуют один ряд (центральный) и снабжено на периферийном участке радиальными каналами одного ряда, сообщающимися с радиальными каналами всех рядов через кольцевое пространство.

Новым также является то, что периферийные однорядные радиальные каналы сообщаются с радиальными каналами всех рядов через секторные участки кольцевого пространства.

На фиг. 1 изображен продольный разрез предлагаемого рабочего колеса; на фиг. 2- сечение АА фиг. 1, на фиг. 3 - продольный разрез рабочего колеса с 3-рядными каналами, сообщающимися с периферийными однорядными каналами через кольцевое пространство; на фиг. 4 - вид на рабочее колесо (фиг. 3) в плане со снятым ведомым диском; на фиг. 5 - в плане каналы "5" фиг. 3; на фиг. 6 - в плане каналы "6" фиг. 3; на фиг. 7 - в плане каналы "4" фиг. 3; на фиг. 8 - продольный разрез рабочего колеса с 2-рядными каналами, сообщающимися с периферийными однорядными каналами через кольцевое пространство;
на фиг. 9 - вид на рабочее колесо (фиг. 8) в плане со снятым ведомым диском;
на фиг. 10 - толщины стенок между смежными каналами.

Рабочее колесо (фиг. 3) состоит из ведущего 1, ведомого 2 и лопаточного 3 дисков. В последнем выполнены 3- или 2-рядные радиальные каналы 4, 5 и 6. Стенки боковых каналов 4 и 5 ближе к периферии с диаметра D1 выполнены конусными, причем стенки 7 и 8, обращенные в противоположные стороны от плоскости симметрии рабочего колеса, пересекаются между собой в его плоскости симметрии по окружности D2, длина которой равна длине дуги всех каналов плюс толщина стенок между смежными каналами. Оптимальное значение диаметра D2 определяют из выражения.

ПD2-(L+t)n;

где L - длина канала по дуге окружности D2;
t - толщина лопатки на диаметре D2;
n - количество каналов, выходящих на диаметр D2.

Внутренние стенки каналов 6 3-рядного рабочего колеса, которые обращены к оси симметрии, на периферии в конические поверхности не переходят. Каналы одного ряда смещены в окружном направлении от каналов смежного ряда на величину 360o/n (где n - число рядов) и в плоскости симметрии образуют один ряд (центральный). Все каналы на диаметры D3 выходят на полосу, ограниченную двумя поперечными плоскостями 9 и 10. На периферии рабочего колеса выполнены радиальные (однорядные) каналы 11, образованные лопатками 12. Между концентрическими окружностями, сформированными диаметрами D2 и D3, заключено кольцевое пространство 13.

Предлагается два варианта кольцевого пространства 13: сплошное и прерывистое. В первом случае начало всех лопаток периферийного ряда лежит на диаметре D4, а концы лопаток, относящиеся к многорядным каналам, на диаметре D3 (фиг. 5). Во втором случае некоторые лопатки, образующие многорядные каналы, переходят в лопатки периферийного ряда (фиг. 4, 6, 7, 9) и делят кольцевое пространство 13 на отдельные сектора. При D4/D05 кольцевое пространство делают прерывистым, а при D4/D05 - сплошным. На фиг. 5, 6, 7 указан угол между секторами, равный 120o; это один из возможных вариантов. А практически он может меняться в пределах 60 -180o.

Работает рабочее колесо следующим образом: при его вращении жидкость из полости "а" направляется в каналы 4, 5 и 6 (фиг. 3 и 8), пройдя радиальные и наклонные их участки, выходит в кольцевое пространство 13. Здесь давление и скорость жидкости стабилизируются, и после этого жидкость попадает в радиальные каналы 11 (фиг. 4, 5, 6, 7, 9), из которых вытесняется в каналы направляющего аппарата.

Выполнение стенок боковых каналов ближе к периферии конусными позволяет добиться оптимальной величины диффузорности каналов на центральном и периферийном участках и резко снизить вихревые потоки в каналах и тем самым повысить КПД и снизить пусковой момент.

Смещение каналов одного ряда в окружном направлении от каналов смежного ряда на величину угла 360o/n позволяет достичь плавный переход боковых каналов в один центральный ряд каналов с оптимальной диффузорностью, что также снижает вихревые потоки и ведет к повышению КПД и снижению пускового момента.

В кольцевом пространстве происходит уравнивание потока жидкости по скоростям и давлению. Это пространство служит как бы в качестве всасывающей полосы для периферийного участка рабочего колеса. Выходящий из всех каналов поток жидкости в кольцевом пространстве успокаивается, откуда попадает в каналы периферийного ряда, который фактически выполняет функцию второй ступени рабочего колеса. При этом вихреобразование почти полностью исчезает, а это ведет к повышению КПД.

Использованная информация
1. Патент США N 3478691, МКИ F 04 D 29/22, 1969 г.

2. А.С. N 1117410, МКИ F 04 D 29/18, 1984 г.


Формула изобретения

1. Рабочее колесо центробежного насоса, включающее ведущий, ведомый и лопаточный диски, образующие многорядные радиальные каналы, в которых размещены лопатки, смещенные в окружном направлении, отличающееся тем, что стенки боковых каналов ближе к периферии выполнены конусными, причем стенки, обращенные в противоположные стороны от плоскости симметрии рабочего колеса, выполнены пересекающимися между собой в его плоскости симметрии по окружности, длина которой равна длине дуги всех каналов плюс толщина стенок между смежными каналами, а на периферийном участке колеса выполнены периферийные радиальные каналы, размещенные в один ряд и сообщенные с радиальными каналами всех рядов через кольцевое пространство.

2. Колесо по п.1, отличающееся тем, что кольцевое пространство, сообщающее периферийные и многорядные каналы, разделено на секторы.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10



 

Похожие патенты:

Изобретение относится к области машиностроения и может быть использовано в центробежных и осецентробежных компрессорных машинах

Изобретение относится к области вентиляторостроения, в частности к конструкции радиальных вентиляторов, и может быть использовано при проектировании вентиляторов общехозяйственного назначения

Изобретение относится к компрессоростроению и может быть использовано при изготовлении рабочих колес центробежных компрессоров, вентиляторов, насосов и радиальных турбин

Изобретение относится к области гидромашиностроения и может быть использовано в таких лопастных гидромашинах, как центробежные насосы и компрессоры, а также вентиляторы

Изобретение относится к компрессоростроению и касается конструкции высокоскоростных центробежных машин

Изобретение относится к вентиляторостроению, в частности к способу изготовления рабочего колеса радиального вентилятора, и может быть использовано при проектировании и изготовлении вентилятора с радиальным потоком газа

Изобретение относится к узлам двигателей внутреннего сгорания - ДВС и может быть использовано в автомобилестроении и смежных областях техники, характеризующих устройства для перекачивания жидкости при низкой и критической температурах жидкой среды

Изобретение относится к гидромашиностроению и может быть использовано в устройствах необъемного вытеснения, а именно в центробежных насосах для перекачивания жидкости и в турбинных установках

Изобретение относится к средствам подачи жидкости

Изобретение относится к колесу и спиральному кожуху для центробежного шламового насоса и к центробежному шламовому насосу, содержащему это колесо и этот спиральный кожух

Изобретение относится к области гидромашиностроения и может быть использовано в таких лопастных гидромашинах, как центробежные насосы и компрессоры, а также вентиляторы

Изобретение относится к насосостроению и может быть использовано в нефтегазовой промышленности при добыче нефти из низкодебитных скважин, содержащей механические примеси

Изобретение относится к конструкциям центробежных насосов для подачи жидких, преимущественно агрессивных сред

Изобретение относится к насосостроению, в частности к центробежным насосам и может быть применено в автомобильной промышленности, например, для очистки стекол автомобилей жидкостями, подаваемыми под давлением

Изобретение относится к гидромашиностроению, в частности к насосостроению

Изобретение относится к области насосостроения, а именно к конструкциям рабочих колес центробежных насосов
Наверх