Огнеупорная масса

 

Изобретение может быть использовано в машиностроительной и металлургической отраслях народного хозяйства. Огнеупорная масса состоит, мас.%: глина 75 - 80; кварц-турмалиновый отход 20 - 25. Используют глину состава, мас.%: Al2O3 16,02, SiO2 62,62, CaO 0,48, FeO 0,42, Fe2O3 3,83, ППП 8,11, и кварц-турмалиновый отход состава, мас. %: Аl2О3 13,75, SiO2 61,15, Fe2O3 5,00, FeO 8,10, TiO2 0,68, CaO 1,20, MgO 3,30, Na2O 1,25, K2O 1,60, B2O3 1,90, ППП 2,02. Используемые в огнеупорной массе компоненты - глина и кварц-турмалиновый отход Комсомольского района - ранее для изготовления огнеупорных изделий не использовались. Огнеупорная масса имеет низкую стоимость, обусловленную доступность компонентов, снижает затраты на производство огнеупоров и повышает их эксплуатационные и физико-химические характеристики. 1 табл.

Изобретение относится к составам огнеупорных масс для литейного производства и производства огнеупоров, и может быть использовано в машиностроительной и металлургической отраслях народного хозяйства.

Известен состав [1] огнеупорной массы, содержащий, мас.%: глина огнеупорная 1-11, магний сернокислый 4-10, порошок обожженного магнезита 15-35, шамот - остальное. Данная огнеупорная масса имеет сложный многокомпонентный состав с высокой температурой (согласно [2] - 1575oC) образования жидкой фазы системы MgO-Al2O3-SiO2, что обуславливает высокую стоимость получаемых огнеупорных изделий. Последнее ограничивает диапазон применения огнеупорных изделий из данной массы, например, для футеровки туннельных обжиговых печей.

Разработан состав огнеупорной массы системы каолинит - Al2O3-SiO2-B2O3 [3] , который также содержит дорогостоящие компоненты, в частности обогащенный каолинит. При этом температура обработки изделий из данной огнеупорной массы достаточно высока (1400-1450oC), а физико-механические характеристики низкие.

Наиболее близким по технической сущности и достигаемому результату является огнеупорная масса системы Al2O3-SiO2, содержащая, мас.%: шамот 48, глина огнеупорная 52 [4]. Фракционный состав шамота при пластическом формировании изделий влажности 16-19% составлял: фракции > 3 мм - 0,8%; фракции < 0,54 мм - 49,0%. Минералогический состав отожженных огнеупорных изделий составлял, мас.%: Al2O3 28; SiO2 48,63.

Однако рассматриваемый состав-прототип огнеупорной массы содержит ряд недостатков, препятствующих получению требуемого технического результата. Процесс получения огнеупорных изделий из состава-прототипа энергоемок. Изделия, получаемые из рассматриваемой огнеупорной массы, подвергаются высокотемпературной (1300-1450oC) обработке. Кроме того, получение шамота из огнеупорных глин также приводит к дополнительным затратам. При этом изделия имеют недостаточно высокие физико-механические свойства и химическую стойкость к воздействию шлаков.

Эти и другие недостатки устраняются предлагаемым техническим решением.

Сущность изобретения заключается в том, что предлагается состав огнеупорной массы, состоящий, мас.%: глина Комсомольского района минералогического состава, мас.%: Al2O3 6,2; SiO2 62,62; СаО 0,48; FeO 0,42; Fe2O3 3,83; ППП 8,11, - 75-80; кварц-турмалиновый отход (КТО) Солнечного горно-обогатительного комбината Комсомольского района минералогического состава, мас.%: Al2O3 13,75; SiO2 61,15; Fe2O3 5,00; FeO 8,10; TiO2 0,68; СаО 1,20; MgO 3,30; Na2O 1,25; K2O 1,60; B2O3 1,90; ППП 2,02, - 20-25.

Необходимо отметить, что данные компоненты огнеупорной массы для изготовления огнеупорных изделий ранее не использовались. Фракционный состав КТО при пластическом формировании изделий влажности 16-19% составлял: фракции > 3 мм 0,8%; фракции < 0,54 мм 49,0%. Минералогический состав отожженных огнеупорных изделий составлял, мас. %: Al2O3 15,5875 - 15,71; SiO2 62,2525 - 62,28; СаО 0,624 - 0,66; FeО 1,956 - 2,340; Fe2O3 4,064 - 4,1225; TiO2 0,136 - 0,17; MgO 0,66 - 0,825; Na2O 0,25 - 0,3125; K2O 0,32 - 0,4; B2O3 0,38 - 0,475; ППП 6,5875 - 6,892.

Задача, решаемая предлагаемым составом огнеупорной массы, заключается в повышении физико-механических свойств изготовляемых огнеупорных изделий.

Наличие в КТО легкоплавких окислов способствует образованию жидкой фазы в структуре изделия - сырца при более низких температурах, чем температура обжига, что интенсифицирует процесс спекания изделия. Кроме того, при обжиге огнеупоров системы Al2O3-SiO2 B2O3 играет роль активной минерализирующей добавки, которая активизирует процесс образования муллита [3]. Первые зародыши кристаллов муллита образуются уже при 900oC. При дальнейшем росте температуры процесс муллитообразования лишь интенсифицируется.

Таким образом, реализуется возможность снижения температуры обжига огнеупорных изделий до 900 - 950oC при повышении физико-механических свойств последних (см. таблицу).

Из таблицы видно, что изменение концентрации КТО в огнеупорной массе приводит к снижению физико-механических свойств изделий.

Признаки, характеризующие изобретение: - ограничительные: огнеупорная масса включает шамот и огнеупорную глину; - отличительные: огнеупорная масса содержит, мас.%: глина минералогического состава, мас.%: Al2O3 16,2; SiO2 62,62; СаО 0,48; FeO 0,42; Fe2O3 3,83; ППП 8,11, -75 - 80; кварц-турмалиновый отход минералогического состава, мас. %: Al2O3 13,75; SiO2 61,15; Fe2O3 5,00; FeО 8,10; TiO2 0,68; CaO 1,20; MgO 3,30; Na2O 1,25; K2O 1,60; В2O3 1,90; ППП 2,02, - 20 - 25.

Причинно-следственная связь между существенными признаками и достигаемым техническим решением осуществляется посредством способности легкоплавки окислов КТО в процессе обжига огнеупорных изделий образовать жидкую фазу при более низких температурах термообработки, способствуя интенсивному взаимодействию B2O3 и элементов системы Al2O3-SiO2 с образованием муллита 3Al2O32SiO2 и более полному спеканию структуры огнеупорного изделия. В совокупности действия полиморфных превращений и физико-химических процессов повышаются физико-механические свойства получаемых огнеупорных изделий.

Промышленная применимость разработанного состава огнеупорной массы обуславливается доступностью, региональной принадлежностью и невысокой стоимостью компонентов огнеупорной массы; снижением энергозатрат за счет упразднения операции обжига шамота и длительности операции обжига огнеупорных изделий за счет снижения температуры процесса до 900-950oC; повышением физико-механических свойств огнеупорных изделий. Кроме перечисленного, была определена повышенная стойкость к действию шлаков при плавке сталей и цветных сплавов.

ЛИТЕРАТУРА 1. Огнеупорная масса. Кабанов B.C., Суворов С.А., Власов В.В., Редько Г. С. ; Ленингр.технол.ин-т. А.С.963975, СССР. 3аявл.07.07.80, N 2954516/29-33, опубл. в Б.И., 1982, N37. МКИ С 04 В 33/22.

2. Стрелов К.К. Теоретические основы технологии огнеупорных. - М.: Металлургия, 1985. С.234.

3. Гончаров Ю. И., Терсенова Л.А., Альеов Ю.Н. Двухслойный теплоизоляционный огнеупор// Огнеупоры, 1993. N6. С.33-34.

4. Мамыкин П.С., Стралов К.К. Технология огнеупоров. - М.: Металлургия, 1988, С.266-275.

5. Долотов Г. П. , Кондаков Е.А. Печи и сушила литейного производства: Учебник для техникумов, 2-е изд. , перераб. и доп. - М.: Машиностроение, 1984. 232с.

Формула изобретения

Огнеупорная масса, включающая огнеупорную глину и кварцсодержащий отход, отличающаяся тем, что содержит огнеупорную глину минералогического состава, мас.%: Al2O3 - 16,02 SiO2 - 62,62 CaO - 0,48 FeO - 0,42 Fe2O3 - 3,83
ППП - 8,11
и кварц - турмалиновый отход минералогического состава, мас.%:
Al2O3 - 13,75
SiO2 - 61,15
Fe2O3 - 5,00
FeO - 8,10
TiO2 - - 0,68
CaO - 1,20
MgO - 3,30
Na2O - 1,25
K2O - 1,60
B2O3 - 1,90
ППП - 2,02
при следующем соотношении компонентов, мас.%:
Глина огнеупорная - 75 - 80
Указанный кварц-турмалиновый отход - 20 - 25о

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к составам огнеупорных масс для литейного производства и производства огнеупоров и может быть использовано в машиностроительной и металлургической отраслях народного хозяйства

Изобретение относится к огнеупорной промышленности, в частности к области производства углеродсодержащих огнеупоров для футеровки различных металлургических агрегатов, например конвертеров, электросталеплавильных печей, сталеразливочных ковшей

Изобретение относится к огнеупорной промышленности и может быть использовано при изготовлении шамотных (муллитокремнеземистых) огнеупоров различного назначения, в частности для футеровки элементов доменных печей, сталеразливочных ковшей и др

Изобретение относится к огнеупорной промышленности, а именно к составам уплотнительного материала, который может быть использован для выполнения плотных металло- и шлакоустойчивых швов футеровок металлоплавильных и металлоразливочных устройств

Изобретение относится к технике производства керамических изделий, применяемых в качестве огнеприпаса в печах или в качестве облицовочных камней при замене натуральных мрамора или гранита
Изобретение относится к технологии изготовления углеродсодержащих огнеупоров на основе тугоплавких оксидов или карбида кремния и может быть использовано в огнеупорной и металлургической промышленности

Изобретение относится к способам производства огнеупорных материалов по бетонной технологии и может быть использовано для футеровки вагонеток обжига кирпича и других тепловых агрегатов с рабочей температурой до 1300°С, а также для изготовления горелочных камней и т.д

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления высокотемпературной (до 1000°С) теплоизоляции в виде плит промышленного оборудования, в частности для футеровки катодной части электролизеров для производства алюминия

Изобретение относится к огнеупорным материалам, используемым в алюминиевой промышленности для футеровки катодной части алюминиевого электролизера

Изобретение относится к составам огнеупорных масс для литейного производства и производства огнеупоров и может быть использовано в машиностроительной и металлургической отраслях народного хозяйства

Изобретение относится к производству строительных материалов и может быть использовано для изготовления стеновых керамических изделий

Изобретение относится к производству санитарно-технических и отделочных изделий из керамических материалов, в частности к определению содержания наполнителя в фарфоро-фаянсовых шликерах
Изобретение относится к области технологии керамических материалов и касается способов изготовления керамического изделия, имеющего внешний вид, свойственный старинным изделиям

Изобретение относится к керамической промышленности, а именно к получению фарфоровых изделий

Изобретение относится к огнеупорной промышленности и может быть использовано при изготовлении шамотных (муллитокремнеземистых) огнеупоров различного назначения, в частности для футеровки элементов доменных печей, сталеразливочных ковшей и др

Изобретение относится к огнеупорной промышленности, а именно к составам уплотнительного материала, который может быть использован для выполнения плотных металло- и шлакоустойчивых швов футеровок металлоплавильных и металлоразливочных устройств

Изобретение относится к технике производства строительных материалов и может быть использовано при изготовлении как лицевого, так и обычного кирпича, а также при производстве золокерамических камней
Наверх