Устройство для контроля расхода компонентов продукции скважин

 

Изобретение относится к газодобывающей промышленности и предназначено для одновременного раздельного измерения расхода газа и количеств песка и водоглинопесчаной смеси в продукции эксплуатационных газовых скважин. Задачей изобретения является измерение расхода газа и раздельно количества песка и водоглинопесчаной смеси с необходимой точностью в широком диапазоне изменения режимов работы эксплуатационных газовых скважин. Для этого в предлагаемое устройство введены два информационных канала для измерения количеств песка и водоглинопесчаной смеси. Это позволяет расширить функциональные возможности устройства при использовании его на газовых скважинах. Введение управляемого масштабирующего усилителя в измерительный канал расхода газа позволяет повысить точность измерения расхода газа. Разграничение по частотам полезных сигналов расхода газа и количества примесей в информативных диапазонах частот на этапе предварительного усиления дает возможность обеспечить высокую помехоустойчивость устройства. 2 ил.

Изобретение относится к области газодобывающей промышленности и может быть использовано при измерении расхода газа и количества примесей (песка и водоглинопесчаной смеси) в продукции эксплуатационных газовых скважин.

Известно устройство для контроля твердых примесей в газожидкостных потоках, состоящее из акустического зонда и регистрирующего блока. Акустический зонд состоит из приемного стержня и пьезокристаллического датчика, помещенного в корпус, устанавливаемый на трубопроводе посредством бобышки. Пьезоэлектрический датчик соединен кабелем с блоком регистрации, который содержит последовательно соединенные усилитель, фильтр высоких частот, формирователь сигнала, индикатор и блок сигнализации, контроля и управления, связанный с исполнительным механизмом (см. патент SU N 1357795, кл. GO 1 N 15/06, 1986 г.).

К недостаткам устройства следует отнести его узкие функциональные возможности, так как устройство не измеряет расход основных компонент газожидкостных потоков, а также невысокую точность измерения количества твердых примесей, так как подавление сигнала помехи возложено на элементы конструкции зонда, а при высоких дебитах, когда резко увеличивается интенсивность и эффективная полоса спектра турбулентности один фильтр высоких частот не обеспечит четкого выделения информативной полосы частот.

Известно устройство для определения дебитов компонентов продукции скважин (жидкости и газа), содержащее измерительный модуль, включающий пьезокерамический датчик пульсаций давления и согласующий усилитель, подключенный к двум идентичным каналам, состоящим из фильтров, соответственно, нижних и верхних частот, блоков детектирования, блоков извлечения квадратного корня и интеграторов, причем выходы последних подключены к блоку вычитания сигналов, подсоединенного к регистраторам расходов жидкости и газа (см. патент РФ N 1060791, МПК E 21 В 47/00, 1991 г.).

Недостатком устройства является невысокая точность определения дебитов при изменении режимов работы скважин, когда в процессе контроля существенно изменяется расход. В этих случаях приходится работать при пониженном коэффициенте усиления, а следовательно, при низком соотношении "полезный сигнал-шум". Наиболее близким к предлагаемому изобретению является устройство для контроля расхода компонентов продукции скважины, содержащее пьезокерамический датчик пульсаций давления потока, подключенный к входу согласующего усилительного блока, блок фильтрации, масштабирующий усилитель, аналого-цифровой преобразователь выход которого подключен к первому входу микропроцессорного контроллера, выход которого подключен к второму входу масштабирующего усилителя (см. патент RU N 2103502 C1, кл. E 21 В 47/10, 27.01.98).

К недостаткам следует отнести предварительное усиление общего информационного сигнала пьезокерамического датчика согласующим усилителем, что приводит к усилению помех и затрудняет их дальнейшее подавление.

Присутствие в потоке газа значительного количества примесей (песка и водоглинопесчаной смеси) приводит к серьезным осложнениям в работе газопромыслового оборудования и к его разрушению. Поэтому контроль интенсивности выноса примесей и критических дебитов газа, при которых интенсивность выноса примесей существенно возрастает, становится необходимым на поздних этапах разработки газовых месторождений.

Задачей предлагаемого изобретения является создание устройства для одновременного раздельного измерения расхода газа и количеств песка и водоглинопесчаной смеси (ВГПС) в продукции скважин, обладающего высокой помехоустойчивостью за счет разграничения по частотам полезных сигналов в информативных диапазонах частот на этапе предварительного усиления сигнала, с повышением точности измерения расхода газа.

Решение поставленной задачи достигается тем, что устройство для контроля расхода компонентов продукции скважин, содержащее пьезокерамический датчик пульсаций давления потока, подключенный к входу согласующего усилительного блока, блок фильтрации, усилитель, аналого-цифровой преобразователь, выход которого подключен к первому входу микропроцессорного контроллера, выход которого подключен к второму входу масштабирующего усилителя, снабжено двумя формирователями импульсов причем согласующий усилительный блок выполнен в виде согласующих усилителей нижних и верхних частот, блок фильтрации выполнен в виде первого, второго и третьего активных полосовых фильтров, а входы согласующих усилителей нижних и верхних частот являются входом согласующего усилительного блока, при этом выход согласующего усилителя нижних частот подключен ко входу первого активного полосового фильтра, вход которого подключен к первому входу масштабирующего усилителя, выход которого подключен ко входу аналого-цифрового преобразователя, а выход согласующего усилителя верхних частот подключен ко входам второго и третьего активных полосовых фильтров, выходы которых подключены ко входам, соответственного, первого и второго компараторов уровня, выходы которых подключены ко входам, соответственно, первого и второго формирователей импульсов, выходы которых подключены, соответственно, ко второму и третьему входам микропроцессорного контроллера.

Функционирование предлагаемого устройства осуществляется в соответствии с зависимостями, связывающими расход газа со среднеквадратическим значением информативного сигнала, а количество песка и водоглинопесчаной смеси - с количеством импульсов на выходе соответствующих формирователей импульсов: Qг= AG; (1) (2) (3) где Qг - расход газа; Кп - количество песка; КВГПС - количество водоглинопесчаной смеси; G - среднеквадратическое значение сигнала в информативной полосе частот; S1 - количество импульсов на выходе первого формирователя импульсов за время измерения; S2 - количество импульсов на выходе второго формирователя импульсов за время измерения;
V - скорость потока продукции скважины;
A, B, C - коэффициенты, определяемые на стадии калибровки.


V = Qг/F (5)
М - количество циклов измерения;
K - коэффициент усиления масштабирующего усилителя;
Xi - мгновенное значение сигнала в информативной полосе частот;
F - площадь поперечного сечения трубопровода.

Блок-схема устройства показана на фиг. 1. Устройство для контроля расхода компонентов продукции скважин состоит из измерительного модуля 1 и вторичного измерительного прибора 2. В состав измерительного модуля входят пьезокерамический датчик 3 и согласующие усилители нижних и верхних частот, соответственно, 4 и 5. Во второй измерительный прибор входят первый, второй и третий активные полосовые фильтры, 6, 7 и 8, управляемый масштабирующий усилитель 9, аналогово-цифровой преобразователь 10, первый и второй компараторы уровня, 11 и 12, первый и второй формирователи импульсов 13 и 14, а также микропроцессорный контроллер 15 с дисплеем 16 и клавиатурой 17.

Измерительный модуль 1 устанавливается на трубопроводе 18 на определенном расстоянии от специального сужающего устройства 19, устанавливаемого в трубопровод для более интенсивной турбулизации и формирования заданной структуры потока.

Вторичный измерительный прибор 2 выполнен переносным и может периодически подключаться к измерительному модулю 1. Устройство работает следующим образом.

Сигнал с пьезокерамического датчика 3 поступает на согласующие усилители нижних и верхних частот 4 и 5, служащие для усиления сигнала в соответствующих частотных диапазонах. Разделение выходного сигнала пьезокерамического датчика на два канала до предварительного его усиления обеспечивает снижение уровня помех за счет последующего избирательного усиления. Сигнал с согласующего усилителя нижних частот 4 поступает на первый активный полосовой фильтр 6, который формирует информативную полосу частот канала "расход газа". Он выделяет и усиливает сигнал с частотными составляющими в диапазоне от десятков до сотен герц. С выхода активного полосового фильтра 6 сигнал поступает на первый вход масштабирующего усилителя 9. Оптимальный коэффициент усиления этого усилителя задается автоматически микропроцессорным контроллером 15, выход которого подан на второй вход масштабирующего усилителя 9. Выход масштабирующего усилителя соединен с выходом аналого-цифрового преобразователя 10, с выхода которого сигнал поступает на первый вход (последовательный цифровой вход) микропроцессорного контроллера 15. Микропроцессорный контроллер производит вычисления в соответствии с алгоритмом функционирования и по окончании измерений полученное значение индицируется на цифровом дисплее 16.

Формирование информационных сигналов каналов "песок" и "ВГПС" производится следующим образом. Сигнал с согласующего усилителя верхних частот 5 поступает на второй и третий активные полосовые фильтры 7 и 8, которые выделяют и усиливают сигналы с частотными составляющими в диапазоне сотен и десятков килогерц, соответственно. Выделенные и усиленные сигналы поступают на компараторы уровня, соответственно, 11 и 12. Пороги срабатывания компараторов уровня настраиваются заведомо выше уровня шумов. При появлении полезных сигналов с амплитудой выше порогового уровня компараторы срабатывают и запускают формирователи импульсов, соответственно, 13 и 14. По общему числу импульсов можно судить об интенсивности ударного воздействия частиц песка и ВГПС. Импульсы с выхода формирователей 13 и 14 поступают, соответственно, на второй и третий входы (входы внешнего прерывания) микропроцессорного контроллера 15. После соответствующей обработки информации в микропроцессорном контроллере полученные значения индицируются на цифровом дисплее 15.

Клавиатура 17 служит для ввода параметров процессора измерения.

Алгоритм работы микропроцессорного контроллера 15 приведен на фиг. 2. Он содержит следующие основные операторы.

По первому входу:
1 - пуск;
2 - подпрограмма самотестирования;
3 - подпрограмма инициализации ресурсов системы;
4 - ввод с клавиатуры количества циклов измерения М;
5 - обнуление накопителей каналов расхода газа, количества песка и количества ВГПС;
6 - инициализация коэффициента усиления K масштабирующего усилителя;
7 - чтение из АЦП мгновенного значения сигнала X, в информативной полосе частот;
8 - накопление суммы (Xi/К)2;
9 - подпрограмма расчета оптимального K;
10 - вывод K на выход микропроцессорного контроллера;
11 - проверка окончания последнего цикла измерения;
12 - вычисление среднеквадратического значения G;
13 - вычисление расхода газа, количества песка и количества ВГПС по формулам (1), (2) и (3), соответственно;
14 - вывод Qг, Kп и KВПГС на индикацию;
15 - конец.

По второму входу:
16 - старт подпрограммы обработки прерываний от первого формирователя импульсов;
17 - увеличение на единицу накопителя канала "песок";
18 - возврат в основную программу.

По третьему входу:
19 - старт подпрограммы обработки прерываний от второго формирователя импульсов;
20 - увеличение на единицу накопителя канала "ВГПС";
21 - возврат в основную программу.


Формула изобретения

Устройство для контроля расхода компонентов продукции скважины, содержащее пьезокерамический датчик пульсаций давления потока, подключенный к входу согласующего усилительного блока, блок фильтрации, масштабирующий усилитель, аналого-цифровой преобразователь, выход которого подключен к первому входу микропроцессорного контроллера, выход которого подключен к второму входу масштабирующего усилителя, отличающееся тем, что оно снабжено двумя компараторами уровня и двумя формирователями импульсов, причем согласующий усилительный блок выполнен в виде согласующих усилителей нижних и верхних частот, блок фильтрации выполнен в виде первого, второго и третьего активных полосовых фильтров, а выходы согласующих усилителей нижних и верхних частот являются входом согласующего усилительного блока, при этом выход согласующего усилителя нижних частот подключен ко входу первого активного полосового фильтра, выход которого подключен к первому входу масштабирующего усилителя, выход которого подключен ко входу аналого-цифрового преобразователя, а выход согласующего усилителя верхних частот подключен к входам второго и третьего активных полосовых фильтров, выходы которых подключены ко входам, соответственно, первого и второго компараторов уровня, выходы которых подключены ко входам, соответственно, первого и второго формирователей импульсов, выходы которых подключены, соответственно, ко второму и третьему входам микропроцессорного контроллера.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области газодобывающей промышленности для одновременного раздельного измерения расхода газа и количеств песка и водоглинопесчаной смеси в продукции эксплуатационных газовых скважин

Изобретение относится к области газодобывающей промышленности и предназначено для измерения расхода газа и количества песка в продукции эксплуатационных газовых скважин

Изобретение относится к нефтедобывающей промышленности и предназначено для прогнозирования эффективности геолого-технических мероприятий (ГТМ) при планировании операций интенсификации добычи нефти в добывающих и повышения приемистости в нагнетательных скважинах

Изобретение относится к газодобывающей промышленности для одновременного раздельного измерения расхода газа и количеств песка и водоглинопесчаной смеси в продукции эксплуатационных газовых скважин

Изобретение относится к области газодобывающей промышленности для одновременного раздельного измерения расхода газа и количеств песка и водоглинопесчаной смеси в продукции эксплуатационных газовых скважин

Изобретение относится к разработке газа и газоконденсатных месторождений

Изобретение относится к области нефтедобычи и может быть использовано для контроля количества жидкости, протекающей по трубопроводу, и производительности нефтяных скважин, в частности добывающих, оборудованных штанговыми глубинными насосами /ШГН/

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения содержания газа и нефти в продукции скважин, в том числе при высоком газовом факторе, а также в передвижных установках для измерения газового фактора
Изобретение относится к разработке и эксплуатации жидких полезных ископаемых и геофизики

Изобретение относится к гидродинамическим исследованиям нефтяных скважин, а более конкретно к потокометрии

Изобретение относится к измерительной технике, а именно к устройствам для измерения содержания жидкой и газообразной фракций в нефтегазоводяных смесях

Изобретение относится к области измерения количества жидкости и газа в газожидкостной смеси (ГЖС)

Изобретение относится к области измерительной техники и может быть использовано в газовой и нефтедобывающей промышленности для определения покомпонентного расхода без разделения на фракции газожидкостной смеси (ГЖС) продуктов добычи в трубопроводах непосредственно на скважинах или на коллекторных участках первичной переработки газоконденсатных или нефтяных промыслов

Изобретение относится к гидрогеологии и может быть использовано при контроле за разработкой нефтяных и водоносных пластов

Изобретение относится к газодобывающей промышленности и может быть использовано при изучении флюидодинамики подземного хранилища газа

Изобретение относится к автоматизированным сепараторным системам нефтяных месторождений, предназначенным для использования в измерении объемов добычи, включая смесь из нефти, газа и воды

Изобретение относится к нефтедобыче и может быть использовано для определения интервалов заколонного движения жидкости в нагнетательной скважине

Изобретение относится к нефтедобывающей промышленности и предназначено для контроля за разработкой нефтяных месторождений с рядом совместно эксплуатируемых нефтяных объектов
Наверх