Способ обработки стали в ковше

 

Изобретение относится к металлургии, конкретнее к комплексной внепечной обработке металла в ковше для последующей непрерывной разливки стали. Технический эффект заключается в повышении степени десульфурации и нагрева стали. Способ обработки стали в ковше включает выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска стали твердой шлаковой смеси (ШС), состоящей в мас.% из 50 - 90 извести, 1-30 гранулированного алюминия и плавикового шпата остальное. Расход (ШС) устанавливают по зависимости G = К1 (S1 - S2) М, где G - расход (ШС), кг/т стали; S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%, S2 - необходимое содержание серы в стали после ее обработки в ковше, мас.%, М - масса стали в ковше, т, К1 - эмпирический коэффициент, равный 4,3-12,0 кг/т2 %. Затем в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху в течение времени, определяемого по определенной зависимости, учитывающей расход кислорода, объем стали в ковше, расход алюминиевой проволоки, температуру стали в ковше при начале ее обработки и площадь зеркала стали в ковше. После продувки кислородом сталь продувают нейтральным газом в течение времени, определяемого по приведенной зависимости. 1 табл.

Изобретение относится к металлургии, конкретнее к комплексной внепечной обработке металла в ковше для последующей непрерывной разливки стали.

Наиболее близким по технической сущности является способ обработки стали в ковше, включающий выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска шлаковой смеси, последующую подачу в ковш алюминиевой проволоки, продувку стали в ковше кислородом и нейтральным газом сверху через погружную фурму. В качестве шлаковой смеси используют жидкий известково-глиноземистый шлак (См. Технология производства стали в современных конвертерных цехах. С.В. Колпаков и др. М., Машиностроение, 1991, с. 212).

Недостатком известного способа является низкая эффективность обработки стали в ковше, в том числе процесса десульфурации и нагрева стали. Это объясняется применением жидкого известково-глиноземистого шлака, а также нерегламентированными расходами алюминия, кислорода и шлака. В этих условиях жидкий известково-глиноземистый шлак имеет низкую сульфидную емкость. Нерегламентированные расходы алюминия и кислорода не позволяют поддерживать шлак в жидкоподвижном состоянии при оптимальной температуре, что снижает кинетику процесса десульфурации металла. Кроме того, нерегламентированная подача кислорода и алюминия не позволяет эффективно и полно протекать экзотермическим реакциям взаимодействия кислорода и алюминия.

Технический эффект при использовании изобретения заключается в повышении степени десульфурации и нагрева стали.

Указанный технический эффект достигают тем, что способ обработки стали в ковше включает выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска стали шлаковой смеси, последующую подачу в ковш алюминиевой проволоки, продувку стали в ковше кислородом и нейтральным газом сверху через погружную фурму.

Расход шлаковой смеси устанавливают по зависимости: G = K1(S1 - S2)M; где G - расход шлаковой смеси, кг/т стали; S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%; S2 - необходимое содержание серы в стали после ее обработки, мас.%; M - масса стали в ковше, т; K1 - эмпирический коэффициент, учитывающий физико-химические закономерности обработки стали в ковше шлаковой смесью, равный 4,3 - 12,0 кг/т2%.

после чего в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху в течение времени, определяемого по эмпирической зависимости: 1 = K2GQ1Vq/Ft, где 1 - время продувки стали кислородом в ковше, мин; Q1 - расход кислорода, м3мин;
V - объем стали в ковше, м3;
q - расход алюминиевой проволоки, кг/т стали;
t - температура стали в ковше при начале ее обработки, градoC;
F - площадь зеркала стали в ковше, м2;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности взаимодействия шлаковой смеси и стали в процессе ее продувки кислородом, равный 110 - 435 мин2т3oC/кг2м4.

После продувки кислородом сталь в ковше продувают нейтральным газом в течение времени, определяемого по зависимости
2 = K3GQ2,
где 2 - время продувки стали нейтральным газом, мин;
Q2 - расход нейтрального газа, м3мин;
K3 - эмпирический коэффициент, учитывающий физико-химические закономерности усреднения объема стали в ковше по химсоставу и температуре, равный 76 - 330 т2мин2/кгм3.

В качестве шлаковой смеси используют твердую шлаковую смесь, состоящую, мас.%:
Известь - 50 - 90
Гранулированный алюминий - 1 - 30
Плавиковый шпат - Остальное
Повышение степени десульфурации и нагрева стали будет происходить вследствие использования твердой шлаковой смеси заявляемого состава, а также необходимых расходных и временных параметров обработки стали в ковше в оптимальных пределах. В этих условиях наличие в шлаковой смеси гранул алюминия предопределяет образование легкоплавкой эвтектики Al2O3. При этом обеспечивается быстрый перевод извести в жидкое состояние вследствие образования и присутствия в расплаве Al2O3. Регламентированные подачи алюминия и кислорода при внепечной обработке стали позволяет поддержать шлак в жидкоподвижном активном состоянии при оптимальной температуре, что также повышает рафинирующую способность шлака.

Диапазон значений эмпирического коэффициента K1 в пределах 0,3 - 12,0 объясняется физико-химическими закономерностями взаимодействия твердой шлаковой смеси и стали в процессе ее выпуска из сталеплавильного агрегата. При больших значениях не будет происходить десульфурация стали в необходимых пределах. При меньших значениях будет происходить перерасход шлаковой смеси без дальнейшего снижения содержания серы в стали.

Указанный диапазон устанавливают в зависимости от разницы между необходимым содержанием серы в стали после ее обработки и содержанием серы в стали, выпускаемой из сталеплавильного агрегата, а также емкости ковша.

Диапазон значений эмпирического коэффициента K2 в пределах 110 - 435 объясняется физико-химическими закономерностями процесса десульфурации стали при ее обработке в ковше под слоем шлака. При меньших значениях будет увеличиваться время продувки стали кислородом и подачи алюминиевой проволоки сверх допустимых значений. При больших значениях расход кислорода будет ниже необходимых значений.

Указанный диапазон устанавливают в зависимости от величины необходимого содержания серы в готовой стали и емкости ковша.

Диапазон значений эмпирического коэффициента K3 в пределах 76 - 330 объясняется газодинамическими закономерностями перемешивания стали в ковше при помощи нейтрального газа, а также усреднения стали по химсоставу и температуре. При меньших значениях время продувки стали нейтральным газом будет выше допустимых значений. При больших значениях время продувки стали нейтральным газом будет недостаточным.

Указанный диапазон устанавливают в зависимости от емкости ковша.

Диапазон величин содержания компонентов в твердой шлаковой смеси в заявляемых пределах объясняется физико-химическими закономерностями десульфурации стали. При меньших и больших значениях не будет обеспечиваться необходимая эффективность удаления серы из стали. При больших значениях будет происходить перерасход твердой шлаковой смеси.

Указанные диапазоны устанавливают в зависимости от содержания серы в стали, выпускаемой из сталеплавильного агрегата, и емкости ковша.

Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".

Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.

Способ обработки стали в ковше осуществляют следующим образом.

Пример. В процессе обработки сталь с химическим составом, мас.%: C = 0,02 - 0,30; Si = 0,02 - 1,0; Mn = 0,10 - 2,0; Al = 0,02 - 0,10; S = 0,010 - 0,035 выпускают из конвертера в ковш. В процессе выпуска в ковш подают твердую шлаковую смесь. После наполнения металлом ковш подают на установку доводки металла, где в ковш подают алюминиевую проволоку при помощи трайбаппарата диаметром 8 - 12 мм со скоростью 5 - 10 м/с и одновременно продувают кислородом сверху через погружную фурму. После продувки кислородом сталь в ковше продувают нейтральным газом, например аргоном.

Расход шлаковой смеси устанавливают по зависимости:
G = K1(S1 - S2)M,
где G - расход шлаковой смеси, кг/т стали;
S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%;
S2 - необходимое содержание серы в стали после ее обработки в ковше, мас.%;
M - масса стали в ковше, т;
T - температура стали в конверте перед выпуском, oC;
K1 - эмпирический коэффициент, учитывающий физико-химические закономерности процесса обработки стали в ковше шлаковой смесью, равный 4,3 - 12,0 кг/т2%.

Затем в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху в течение времени, определяемого по зависимости:
1 = K2GQ1Vq/Ft,
где 1 - время продувки стали кислородом в ковше, мин;
Q1 - расход кислорода, м3мин;
V - объем стали в ковше, м3;
q - расход алюминиевой проволоки, кг/т стали;
t - температура стали в ковше при начале обработки, град.C;
F - площадь зеркала стали в ковше, м2;
K2 - эмпирический коэффициент, учитывающий физико-химические закономерности взаимодействия шлаковой смеси и стали в процессе ее продувки кислородом, равный 110 - 435 мин2т3oC/кг2м4.

После продувки кислородом сталь в ковше продувают нейтральным газом в течение времени, определяемого по зависимости
2 = K3GQ2,
где 2 - время продувки стали нейтральным газом, мин;
Q2 - расход нейтрального газа, м3мин;
K3 - эмпирический коэффициент, учитывающий физико-химические закономерности усреднения объема стали в ковше по химсоставу и температуре, равный 76 - 330 т2мин2/кг/м3.

В качестве шлаковой смеси используют твердую шлаковую смесь, состоящую, мас.%:
Известь - 50 - 90
Гранулированный алюминий - 1 - 30
Плавиковый шпат - остальное.

При подаче алюминия и кислорода в сталь протекают окислительные экзотермические реакции взаимодействия кислорода и алюминия. Эти реакции протекают с большим выделением тепла, что позволяет нагреть металл и шлак до оптимальных температур, повысить жидкотекучесть и активность шлака. При этих условиях повышаются кинетические процессы десульфурации стали.

В таблице приведены примеры осуществления способа с различными технологическими параметрами.

В первом и пятом примерах не обеспечивается необходимое низкое содержание серы в обработанной стали и ее нагрев.

В оптимальных примерах 2 - 4 обеспечивается необходимая десульфурация стали при одновременном ее нагреве.

Применение изобретения позволяет повысить выход годной стали для непрерывной разливки по химсоставу и температуре на 60 - 70%.


Формула изобретения

Способ обработки стали в ковше, включающий выпуск стали из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска стали шлаковой смеси, последующую подачу в ковш алюминиевой проволоки, продувку стали в ковше кислородом и нейтральным газом сверху через погружную фурму, отличающийся тем, что расход шлаковой смеси устанавливают по зависимости
G = К1(S1-S2)М,
где G - расход шлаковой смеси, кг/т стали;
S1 - содержание серы в стали, сливаемой в ковш из сталеплавильного агрегата, мас.%;
S2 - необходимое содержание серы в стали после ее обработки в ковше, мас.%;
М - масса стали в ковше, т;
К1 - эмпирический коэффициент, учитывающий физико-химические закономерности процесса обработки стали в ковше шлаковой смесью, равный 4,3 - 12,0, кг/т2%,
при этом в качестве шлаковой смеси используют твердую шлаковую смесь, состоящую, мас.%:
Известь - 50 - 90
Гранулированный алюминий - 1 - 30
Плавиковый шпат - Остальное
после подачи твердой шлаковой смеси в ковш подают алюминиевую проволоку и продувают сталь кислородом сверху в течение времени, определяемом по эмпирической зависимости
1= K2GQ1Vq/Ft,
где 1 - время продувки стали кислородом в ковше, мин;
Q1 - расход кислорода, м3мин;
V - объем стали в ковше, м3;
q - расход алюминиевой проволоки, кг/т стали;
t - температура стали в ковше при начале обработки, oC;
F - площадь зеркала стали в ковше, м2;
К2 - эмпирический коэффициент, учитывающий физико-химические закономерности взаимодействия твердой шлаковой смеси и стали в процессе ее продувки кислородом, равный 110 - 435, мин2т3oC/кг2м4;
а после продувки кислородом сталь в ковше продувают нейтральным газом в течение времени, определяемом по зависимости
2= K3GQ2,
где 2 - время продувки стали нейтральным газом, мин;
Q2 - расход нейтрального газа, м3мин;
К3 - эмпирический коэффициент, учитывающий физико-химические закономерности усреднения объема стали в ковше по химсоставу и температуре, равный 76 - 330 т2мин2/кгм3.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к металлургии, конкретнее к комплексной внепечной обработке металла в ковше для последующей непрерывной разливки стали
Изобретение относится к металлургии, в частности к способам производства стали

Изобретение относится к металлургии, конкретнее к обработке стали твердыми шлаковыми смесями в процессе ее выпуска из сталеплавильного агрегата в сталеразливочный ковш

Изобретение относится к металлургии, конкретно к процессам получения стали при ее обработке в ковше

Изобретение относится к металлургии, в частности к сталеплавильному и литейному производству

Изобретение относится к черной металлургии, а именно к внепечной обработке металла введением в расплав проволоки

Изобретение относится к черной металлургии и может быть использовано при десульфурации жидких чугуна и стали в ковше во время выпуска и внепечной обработки

Изобретение относится к металлургии и может использоваться при производстве микролегированной полуспокойной стали в различных сталеплавильных агрегатах, в том числе и в кислородных конвертерах

Изобретение относится к металлургии, конкретнее к комплексной внепечной обработке металла в ковше для последующей непрерывной разливки стали

Изобретение относится к металлургии, конкретнее к комплексной внепечной обработке металла в ковше для последующей непрерывной разливки стали

Изобретение относится к металлургии, конкретнее к выплавке электротехнических кремнистых марок стали, их последующей десульфурации, раскислению и легированию

Изобретение относится к области металлургии

Изобретение относится к черной металлургии и предназначено для использования в сталеплавильном производстве при раскислении и легировании стали алюминием

Изобретение относится к черной металлургии и предназначено для использования преимущественно в сталеплавильном производстве при раскислении и науглероживании стали
Изобретение относится к черной металлургии, в частности к обработке стали в ковше
Изобретение относится к металлургии, в частности к способам производства стали

Изобретение относится к металлургии, конкретнее к обработке стали твердыми шлаковыми смесями в процессе ее выпуска из сталеплавильного агрегата в сталеразливочный ковш

Изобретение относится к черной металлургии, конкретно к способу внепечной обработки высокоуглеродистой стали

Изобретение относится к области черной металлургии, а именно к производству углеродистой стали, и может быть использовано в сталеплавильных цехах металлургических заводов
Наверх