Способ регулирования расхода центробежного электронасоса

 

Изобретение относится к области регулирования расхода жидкости, подаваемой центробежным электронасосом, и может быть использовано в системах тепловодоснабжения городов, населенных пунктов и предприятий. Согласно изобретению при регулировании расхода измеряют активную мощность, потребляемую электродвигателем привода из сети, и вычисляют мощность, действующую на валу насоса с учетом коэффициента полезного действия электродвигателя и эксплуатационного коэффициента полезного действия насосной установки, определяемого при ее работе на закрытую задвижку, измеряют давления на входе и выходе насоса, измеряют частоту питающий сети или число оборотов электродвигателя привода насоса. Расход жидкости, подаваемой центробежным электронасосом, регулируют путем изменения числа оборотов электродвигателя привода насоса за счет изменения частоты напряжения питания электродвигателя с помощью преобразователя частоты или изменением напряжения при использовании электродвигателей постоянного тока или коллекторных электродвигателей переменного тока. Вычисление расхода осуществляется по расходным характеристикам насосов, каждая из которых индивидуальна для каждой насосной установки и отражает зависимость отношения мощности на валу насоса к развиваемому им давлению в текущий момент за вычетом результата деления мощности на создаваемое им давление при работе насоса на закрытую задвижку, умноженное на отношение частот действующей к номинальной и умножения полученной разности на отношение действующей частоты к номинальной. Вычисляют расход и дискретно регулируют частоту питающей сети или напряжение питания до момента, пока действующее давление не будет равно заданному. Использование изобретения позволяет упростить и повысить точность, надежность и экономичность системы регулирования расхода. 6 ил.

Изобретение относится к регулированию расхода жидкости, подаваемой центробежными электронасосами, и может быть использовано в системах тепловодоснабжения городов, населенных пунктов и предприятий в которых используются центробежные электронасосы.

Системы тепловодоснабжения являются сложными и ответственными сооружениями, состоящими из насосных станций и трубопроводов с оконечной арматурой. Одним из важнейших параметров этих систем является регулирование расхода жидкости. Известны способы регулирования расхода путем установки регуляторов расхода непосредственно в трубопроводе, которые основаны на измерении перепада давления в сужающем устройстве трубопровода (Наладка и эксплуатация водяных тепловых сетей: Справочник/В.И. Манюк, Я.И. Каплинский, Э.Б. Хиж и др. - изд., перераб. и доп. - М.: Стройиздат, 1988. - 432 с.).

Недостатками таких регуляторов расхода является то, что для их работы необходимо иметь перепад давления в потоке жидкости на измерительных шайбах, а это приводит к дополнительным энергетическим затратам на работу центробежного насоса. Кроме того, установка и эксплуатация регуляторов расхода требуют больших капитальных и эксплуатационных затрат.

Известно "Устройство для измерения расхода вещества" (патент РФ N 1789861) и "Способ определения расходной характеристики насосной установки" (патент РФ N 1783869 - прототип). В них в качестве расходомера выступает сам центробежный электронасос. Недостатками этого устройства и способа является то, что не предусмотрено регулирование заданного расхода путем изменения числа оборотов вала насоса, это не позволяет их использовать как регуляторы расхода. Поэтому их применение как регуляторов расхода требует дополнительной установки в потоке жидкости регуляторов давления, что ведет к дополнительным капитальным и эксплуатационным затратам.

Цель изобретения - упрощение и повышение точности, надежности и экономичности системы регулирования расхода за счет использования в качестве расходомера и регулятора непосредственно насосной установки без установления в потоке жидкости дополнительных технических средств.

Отличие от известных регуляторов расхода состоит в том, что по рабочим характеристикам насоса N-Q и H-Q при номинальном числе оборотов вала nн или номинальной частоте питающей сети fн находят по точкам во всем диапазоне его производительности Q расходные коэффициенты Mн путем вычитания из результата деления мощности Nн на развиваемое им давление pн при данной производительности Q, результата деления мощности Nо на развиваемое им давление pо при нулевой производительности в начале рабочей характеристики по формуле строят расходную характеристику M-Q и находят ее математическое описание по формуле: где A и В - постоянные для данной насосной установки коэффициенты, полученные при математическом описании расходной характеристики, e - основание натурального логарифма, измеряют текущее значение активной мощности, потребляемой электродвигателем привода насоса из сети Nс, давление на выходе из насоса pв и давление на приеме насоса pп, число оборотов вала электродвигателя насоса n или частоту питающей электродвигатель электрической сети f и находят из рабочей характеристики электродвигателя по замеренной активной мощности Nс значение коэффициента полезного действия электродвигателя эд, учитывают эксплуатационный коэффициент насосной установки эк, определенный перед пуском насосной установки в эксплуатацию по формуле где Nоз, pоз = pозв - pозп - соответственно мощность и давление на насосной установке при закрытой задвижке на выходе из насоса, при давлении на приеме насоса pозп и выходе из насоса pозв, вычисляют действующую мощность N на валу насоса N = Ncэдэк, кВт, вычисляют расходный коэффициент при изменении числа оборотов n вала насоса по формуле
или при измерении частоты питающей электродвигатель электрической сети f по формуле

вычисляют расход Q по формуле

находят разность Q между вычисленным значением расхода Q и заданным его значением Qр
Q = Q-Q3,
задаются шагом дискретизации K, вычисляют шаг дискретизации C по уравнению
QK = C,
устанавливают нормируемый шаг дискретизации D, вычисляют количество нормируемых шагов дискретизации
m = C/D,
регулируют частоту f преобразователя частоты или регулируют подаваемое напряжение, если используется электродвигатель постоянного тока или коллекторный электродвигатель переменного тока, изменяя тем самым число оборотов электродвигателя привода насоса, и при Q < Qз увеличивают частоту или напряжение, а при Q > Qз уменьшают частоту или напряжение до тех пор пока Q = Qз.

На фиг. 1 дана схема насосной установки с приборами контроля и управления. На фиг. 2 даны рабочие характеристики центробежного электронасоса при различном числе оборотов вала насоса. На фиг. 3 даны расходные характеристики центробежного электронасоса при различной частоте вращения вала насоса. На фиг. 4 дан алгоритм регулирования расхода центробежного электронасоса путем изменения частоты вращения его вала за счет изменения частоты питания приводного электродвигателя насоса. На фиг. 5 дан алгоритм регулирования расхода центробежного электронасоса путем изменения числа оборотов его вала за счет изменения напряжения питания приводного электродвигателя насоса постоянного тока или коллекторного двигателя, работающего на переменном токе. На фиг. 6 дан алгоритм дискретного регулирования чистоты частотного преобразователя.

Насосная установка с центробежным электронасосом (фиг. 1) представляет собой систему, состоящую из центробежного насоса Н с задвижками на его входе Зп и на выходе Зв, приводного электродвигателя Д с узлом управления УУ. Для контроля за работой насосной установки на входе в насос и его выходе установлены датчики давления Дп и Дв, статические преобразователи мощности СПМ, датчики для измерения частоты питающей сети ДЧ и в зависимости от потребности датчики числа оборотов ДО вала насоса. Центробежный насос представляет собой машину, в которой под действием вращающихся на оси лопастей, приводимых во вращательное движение, осуществляется перемещение жидкости от входа к выходу насоса. В качестве привода насоса могут применяться трехфазные электродвигатели переменного тока с короткозамкнутым ротором и трехфазные электродвигатели с контактными кольцами в цепи ротора на различное напряжение или двигатели постоянного тока и коллекторные двигатели переменного тока.

Для регулирования числа оборотов вала насоса могут использоваться электродвигатели с короткозамкнутым ротором, снабженные преобразователем частоты ПЧ, в двигателях с контактными кольцами частота регулируется за счет изменения сопротивления в цепи ротора. При применении электродвигателей постоянного тока или коллекторного на переменном токе регулирование производится изменением величины подаваемого питающего напряжения с помощью регулятора напряжения РН. Для регулирования частоты вращения вала насоса могут также использоваться гидромуфты. Возможность каждой насосной установки определяется рабочими характеристиками (фиг. 2), которые представляют собой зависимости создаваемого насосом напора Н потребляемой мощности N и КПД от производительности Q. При отклонении от этих параметров пользоваться рабочими характеристиками в полной мере нельзя. В связи с этим в патенте РФ N 2119148 было предложено ввести в число паспортных характеристик насосов новую характеристику - расходную характеристику M-Q (фиг. 1) и соответствующий расходный коэффициент M, который отражает разность отношений между результатом деления мощности, действующей на валу насоса N, на развиваемое им давление p при данной производительности, результата деления мощности на валу насоса Nо на создаваемые им давление pо при нулевой производительности в начале рабочей характеристики

Однако этот расходный коэффициент M может быть реализован в таком виде только при одном номинальном числе оборотов вала насоса nн.

При регулировании же расхода необходимо менять число оборотов вала насоса. В связи с этим предлагается в формулу (1) по определению расходного коэффициента M ввести параметр, отражающий число оборотов вала насоса n или частоту питающей электродвигатель электрической сети f, при этом расходный коэффициент будет равен с учетом базовой формулы (1) следующему выражению:

или

Здесь p - текущее значение давления, развиваемоe насосом и равное p = pв - pп, где pв - давление на выходе из насоса, а pп - давление на приеме насоса (на его входе),
nн, fн - соответственно номинальное число оборотов вала насоса и номинальная частота питающей электродвигатель сети, при которых снимались паспортные номинальные характеристики насоса;
n, f - соответственно текущее число оборотов вала насоса и текущая частота питающей электрической сети. Следует отметить, что число оборотов n электродвигателя и частота f электрической питающей сети находятся в прямолинейной зависимости.

На фиг. 3 даны расходные характеристики M-Q, построенные по расходным коэффициентам M, вычисленным по формуле (1) при различных числах оборотов вала насоса, причем за базовую характеристику взята характеристика, снятая при номинальном числе оборотов вала насоса nн. Расчет производительности насосной установки независимо от числа оборотов вала насоса вычисляется по формуле
Q = A(1 - e-M/B), м3/с, (4)
где A, B - постоянные для данной насосной установки коэффициенты, полученные при математическом описании расходной характеристики M-Q;
e - основание натурального логарифма.

Алгоритм регулирования расхода при изменении числа оборотов электродвигателя с помощью изменения частоты питающей электродвигатель сети дан на фиг. 4. Он может быть применим при наличии регулируемого привода переменного тока с частотным преобразователем. На фиг. 5 дан алгоритм регулирования расхода путем изменения числа оборотов электродвигателя, например постоянного тока или однофазного коллекторного двигателя на переменном токе. В этом случае число оборотов электродвигателя меняется путем регулирования величины подаваемого питающего напряжения. Для реализации первого алгоритма на насосной установке необходимо иметь преобразователь частоты, датчик для измерения давления на приеме насоса pп и датчик для измерения давления на выходе из насоса pв, датчик для измерения активной мощности Nс, потребляемой электродвигателем привода насоса, датчик для измерения частоты f питающей электрической сети и микропроцессорный контроллер для реализации алгоритма в целом. Для реализации алгоритма по второму варианту вместо частотного преобразователя необходимо иметь регулятор напряжения и датчик числа оборотов, при этом в качестве привода может быть использован электродвигатель постоянного тока или коллекторный электродвигатель на переменном токе. В целом система работает так.

С помощью преобразователя мощности измеряется мощность потребляемая электродвигателем привода из сети N по формуле
Nc= 1,732UIcos, кВт.
Для определения действующей мощности на валу насоса N необходимо знать КПД электродвигателя зд и эксплуатационный коэффициент насосной установки зк. КПД электродвигателя находится из его рабочих характеристик, а эксплуатационный коэффициент по формуле

где Nоз, pоз = pозв - pозп - мощность и давление при работе насосной установки при кратковременно закрытом задвижке на выходе из насоса, с давлением на приеме насоса pов и на выходе насоса pов.

Тогда мощность на валу электродвигателя определяется по формуле
N = Ncэдэк, кВт (6)
Далее измеряют давление на приеме насоса pп и на выходе из насоса pв, измеряют частоту питания сети f и вычисляют расходный коэффициент по формуле (3).

Затем вычисляют расход Q по формуле (4) и находят разность Q между вычисленным значением расхода Q и заданным его значением Qз
Q = Q-Qз,
задаются шагом дискретизации K, вычисляют шаг дискретизации C по уравнению
QK = C,
устанавливают нормируемый шаг дискретизации D, вычисляют количество нормируемых шагов дискретизации m
m = C/D,
регулируют частоту f преобразователя частоты или уровень подаваемого напряжения, если используется электродвигатель постоянного тока или коллекторный электродвигатель переменного тока, изменяя тем самым число оборотов электродвигателя привода насоса и при Q < Qз увеличивают частоту или напряжение, а при Q > Qз уменьшают частоту или напряжение, до тех пор пока Q = Qз.

При использовании в качестве привода насоса двигателя постоянного тока или коллекторного двигателя, работающего на переменном токе, вместо измерения частоты питания электродвигателя измеряется его число оборотов n. Вычисление расходного коэффициента M и расхода Q производится по формулам (2) и (4). При этом регулирование числа оборотов электродвигателя осуществляется путем изменения подаваемого на электродвигатель питающего напряжения до момента, когда Q будет равен Qз. Процесс регулирования частоты и подача управляющего напряжения осуществляется дискретно через заданные промежутки времени в зависимости от дискретности всей системы регулирования расхода. На фиг. 6 дан алгоритм дискретного регулирования частоты питающей сети электродвигателя. Регулирование производится следующим образом. Вычисляют разность Q между вычисленным значением Q и заданным его значением Qз
Q = Q-Qз,
задаются шагом дискретизации K, вычисляют шаг дискретизации C по уравнению
QK = C,
устанавливают нормируемый шаг дискретизации D, вычисляют количество нормируемых шагов дискретизации
m = C/D
и регулируют частоту f преобразователя частоты или уровень подаваемого напряжении, если используется двигатель постоянного тока, изменяя тем самым число оборотов n электродвигателя привода насоса, и при Q < Qз увеличивают частоту или напряжение сети, а при Q > Qр уменьшают частоту или напряжение, до тех пор пока Q = Qз.

Рассмотренный способ регулирования расхода позволяет просто реализовать управление им дистанционно, что особенно важно для управления объектами с линиями большой протяженности и разветвленности, например в городских сетях тепловодоснабжения.


Формула изобретения

Способ регулирования расхода центробежного электронасоса путем изменения числа его оборотов и измерения активной мощности, потребляемой электродвигателем привода насоса, и давлений на приеме и выходе из насоса, отличающийся тем, что по рабочим характеристикам насоса N-Q и H-Q при номинальном числе оборотов вала nн или номинальной частоте питающей сети fн находят по точкам во всем диапазоне его производительности Q расходные коэффициенты Mн путем вычитания из результата деления мощности Nн на развиваемое им давление pн при данной производительности Q, результата деления мощности Nо на развиваемое им давление pо при нулевой производительности в начале рабочей характеристики по формуле

строят расходную характеристику M-Q и находят ее математическое описание по формуле

где A и B постоянные для данной насосной установки коэффициентами, полученные при математическом описании расходной характеристики, e - основание натурального логарифма, измеряют текущее значение активной мощности, потребляемой электродвигателем привода насоса из сети Nс, давление на приеме насоса pп и давление на выходе из насоса pв, число оборотов вала электродвигателя насоса n или частоту питающей электродвигатель электрической сети f, вычисляют давление, развиваемое насосом, по формуле
p = pв - pп, МПа,
из рабочей характеристики электродвигателя по замеренной активной мощности Nс находят значение коэффициента полезного действия электродвигателя эд, учитывают эксплуатационный коэффициент действия насосной установки эк, определенный перед пуском насосной установки в эксплуатацию по формуле

где N03, p03 = p03в - p03п мощность и давление, развиваемые насосной установкой при закрытой задвижке на выходе из насоса, когда давление на приеме насоса равно p03п, а на выходе из насоса равно p03в, вычисляют действующую мощность на валу насоса
N = Nэдэк (кВт),
вычисляют текущий расходный коэффициент с учетом действующего числа оборотов вала насоса n или частоты f питающей электродвигатель сети по формуле

или

вычисляют расход по формуле

находят разность Q между вычисленным значением расхода Q и заданным его значением Q3
Q = Q-Q3,
задаются шагом дискретизации К, вычисляют шаг дискретизации C по уравнению
QK = C,
устанавливают нормируемый шаг дискретизации D, вычисляют количество нормируемых шагов дискретизации
m = C/D
и регулируют частоту f преобразователя частоты или уровень подаваемого напряжения, если используется двигатель постоянного тока или коллекторный двигатель переменного тока, изменяя тем самым число оборотов электродвигателя привода насоса и при Q < Q3, увеличивают частоту или напряжение, а при Q > Q3 уменьшают частоту или напряжение до тех пор, пока Q = Q3.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к машиностроительной гидравлике и может быть использовано в системах терморегулирования изделий авиационной и ракетной техники, а также в других областях техники

Изобретение относится к насосостроению, в частности к центробежным насосам, используемым, например, в системах топливопитания газотурбинных двигателей

Изобретение относится к области управления насосными станциями, в частности к области кустовых насосных станций, работающих в системах поддержания пластового давления на нефтепромыслах

Изобретение относится к технике добычи нефти и может быть использовано для оптимизации работы скважин, позволяющей увеличить межремонтный период работы насосного оборудования

Изобретение относится к области нефтедобычи и может быть использовано для продления срока службы электрических центробежных насосных установок различного типа

Изобретение относится к области защиты электродвигателей электронасосов от аварийных режимов работы

Изобретение относится к струйной и насосной технике и касается, преимущественно, насосных установок для скважинного водозабора

Изобретение относится к машиностроительной гидравлике и может быть использовано в системах терморегулирования изделий авиационной и ракетной техники, а также в других областях техники

Изобретение относится к нефтяной промышленности, а именно к способу эксплуатации центробежных насосов, перекачивающих водонефтяные эмульсии и высокоминерализованные сточные воды

Изобретение относится к насосостроению

Изобретение относится к области автоматического управления погружным электронасосом от датчика верхнего и нижнего уровней воды в резервуаре

Изобретение относится к центробежным насосам, производительность которых может изменяться путем изменения геометрических параметров насоса

Изобретение относится к насосостроению и может быть использовано при эксплуатации нефтяных скважин электроцентробежными насосами

Изобретение относится к насосостроению и может быть использовано в центробежных топливных насосах, имеющих системы, обеспечивающие отключение насоса с одновременным охлаждением его элементов

Изобретение относится к насосостроению, в частности к насосным установкам с центробежными и подобными лопастными насосами, используемыми в системах поддержания пластового давления при нефтедобыче

Изобретение относится к оборудованию для добычи жидкости и может быть использовано в приводах погружных электроцентробежных насосов при эксплуатации нефтедобывающих скважин
Наверх