Управляемый каскадный электрический привод

 

Использование: в промышленности, строительстве, транспорте и других отраслях. Технический результат заключается в регулировании скорости и момента при постоянной механической мощности, снимаемой с вала. Магнитные системы двух электродвигателей выполнены аксиальными и расположены в одном корпусе и на одном валу, который горизонтально закреплен в подшипниковых узлах корпуса. Одной стороной статор первого электродвигателя присоединен к корпусу. На другой его стороне между его трехфазной обмоткой и валовым отверстием расположены катушки управляемых муфт. Ротор первого электродвигателя, расположенный на подшипнике, с одной стороны имеет два кольца малого и большого диаметров из немагнитного материала, а с другой стороны - кольцеобразные щели, расположенные напротив колец. Статор второго электродвигателя, на котором установлены скользящие контакты, расположен на подшипнике и имеет выступ в виде широкого тонкого кольца, заходящий в щель большого диаметра ротора электродвигателя. Ротор второго электродвигателя жестко соединен с валом. Между ротором первого и статором второго электродвигателей расположена металлическая деталей в виде полого стакана, выступом заходящая в щель малого диаметра ротора первого электродвигателя. Выходным элементом является общий вал. 3 ил.

Изобретение относится к области электротехники, в частности к электрическим машинам с несколькими роторами и статорами и электроприводу, и может быть эффективно применено в промышленности, строительстве, транспорте и других отраслях.

Известен асинхронный многоскоростной электродвигатель (см. Москаленко В. В. Электрический привод. М. : Высшая школа, 1991, с.144), представляющий собой обычную асинхронную машину цилиндрического исполнения с короткозамкнутым ротором. Статорная обмотка данного электродвигателя состоит из двух одинаковых секций (полуобмоток). За счет разных схем их соединения может быть изменено число пар полюсов p асинхронного двигателя. В соответствии с формулой 0 = 2f1/p = 2n1, где 0 и n1 - угловая скорость вращения и частота вращения магнитного поля; f1 - частота питающей сети, это техническое решение позволяет изменять угловую скорость вращения магнитного поля и тем самым регулировать угловую скорость вращения асинхронного двигателя.

Однако такая конструкция не позволяет сохранить механическую мощность PMEX на валу постоянной при различных значениях p. Поэтому данный многоскоростной асинхронный электродвигатель в режиме с числом пар полюсов p/2 имеет завышенные габаритные размеры по сравнению с двигателем такой же угловой скорости вращения и такого же момента М, а стоимость такого привода в результате велика. Использование обмоток с переключением числа пар полюсов вызывает усложнение, связанное с применением силовой коммутационной аппаратуры. Также ухудшаются энергетические показатели двигателя и увеличиваются массогабаритные параметры.

Наиболее близким к изобретению по физической сущности и достигаемому результату является каскадный электрический привод (см. патент N 2050672, 1995 г. , авторы Чесноков Г.А., Колесников Д.П., Котов В.А., Иванов В.А.), содержащий два соединенных соосно электродвигателя, каждый из которых включает внутренний магнитопровод, установленный на валу, и наружный магнитопровод, причем пара одноименных магнитопроводов электродвигателей жестко соединены между собой, а один из одноименных магнитопроводов другой пары установлен неподвижно, тогда как второй магнитопровод другой пары установлен с возможностью вращения и является выходным элементом привода. Для получения угловой скорости вращения 2 и момента М внутренние магнитопроводы электродвигателей соединяют между собой жестко, а с наружного магнитопровода одного из них снимают измененную скорость 2 и момент М. Механическая мощность, снимаемая с наружного магнитопровода, PMEX = (2)M = 2M. Если необходимо получить момент 2M и угловую скорость вращения , наружные магнитопроводы электродвигателей соединяют между собой жестко, а с внутреннего магнитопровода снимают момент 2M и угловую скорость вращения . Механическая мощность, снимаемая с внутреннего магнитопровода, PMEX = (2M) = 2M. Механические мощности, снимаемые с разных выходных элементов (внешний и внутренний магнитопроводы), равны.

Однако конструкция такого каскадного электрического привода сложна из-за необходимости штамповки листов цилиндрических внутренних и наружных магнитопроводов. Стоимость такого электропривода велика из-за большого расхода электротехнической стали, связанного с высоким процентом ее отходов при штамповке. Недостатком также являются большие габариты данной установки, так как соответствующие внутренний и внешний магнитопроводы расположены в своем отдельном корпусе и тот факт, что одинаковая механическая мощность снимается с разных выходных элементов - внутреннего и внешнего магнитопроводов.

Предлагаемое изобретение лишено вышеуказанных недостатков и решает задачу обеспечения возможности регулирования скорости и момента при постоянной механической мощности, снимаемой с вала.

Для этого управляемый каскадный электрический привод содержит два соединенных соосно электродвигателя, магнитные системы которых выполнены аксиальными и расположены в одном корпусе и на одном валу, который горизонтально закреплен в подшипниковых узлах корпуса, причем одной стороной статор первого электродвигателя присоединен к корпусу, а на другой стороне статора между его трехфазной обмоткой и валовым отверстием расположены катушки управляемых муфт, ротор первого электродвигателя, расположенный на подшипнике, с одной стороны имеет два кольца малого и большого диаметров из немагнитного материала, а с другой стороны - кольцеобразные щели, расположенные напротив колец, статор второго электродвигателя, на котором установлены скользящие контакты, расположен на подшипнике и имеет выступ в виде широкого тонкого кольца, заходящий в щель большего диаметра ротора первого электродвигателя, ротор второго электродвигателя жестко соединен с валом, а между ротором первого и статором второго электродвигателей расположена металлическая деталь в виде полого стакана, выступом заходящая в щель малого диаметра ротора первого электродвигателя, причем выходным элементом является общий вал.

На фиг. 1 представлен общий вид предлагаемого управляемого каскадного электрического привода в разрезе, на фиг. 2 - магнитная система ротора первого электродвигателя, на фиг. 3 - общий вид и вид сбоку магнитной системы статора второго электродвигателя.

Управляемый каскадный электрический привод содержит (см. фиг. 1): корпус 1, горизонтально расположенный на подшипниках 2 вал 3, на котором расположены четыре магнитопровода с соответствующим чередованием: статор 4 и ротор 5 первого аксиального электродвигателя, статор 6 и ротор 7 второго аксиального электродвигателя, имеющие собственные обмотки, соответственно 8,9,10 и 11. Ротор 5 и статор 6 расположены на валу на подшипниках 12 и 13, тогда как статор 4 жестко соединен с корпусом, например, болтами, а ротор 7 жестко соединен с валом 3. Статор 6 имеет выступ 14 в виде широкого тонкого кольца для создания в процессе работы жесткого соединения с ротором 5. Между статором 6 и ротором 5 расположена металлическая деталь 15 в виде полого стакана. На роторе 5 с одной стороны расположены два кольца малого 16 и большого 17 диаметров из немагнитного материала, а с другой стороны имеются кольцеобразные щели 18 и 19, расположенные соответственно напротив колец 16 и 17. Одной стороной статор 4 присоединен к корпусу, а на другой стороне статора имеются расположенные в нем катушки управляемых муфт 20,21, находящиеся напротив колец 16 и 17. Своим выступом 14 статор 6 входит в щель 19 ротора 5, металлическая деталь 15 входит в щель 18 ротора 5, а свободное пространство щелей 19 и 18 заполнено ферромагнитным порошком 22. На статоре 6 второго электродвигателя расположены скользящие контакты 23, на которые подается напряжение питающей сети.

Ферромагнитный порошок 22, расположенный в щелях 18 и 19 (фиг. 2), может быть защищен от высыпания, например постоянными магнитами.

Выступ 14 статора 6 (фиг. 3) выполнен из того же материала, что и сам магнитопровод (статор 6).

Управляемый каскадный электрический привод работает следующим образом.

Для получения двойной угловой скорости вращения и момента М на валу 3 необходимо сначала на катушку 21 управляемой муфты, а потом и на скользящие контакты 23, подать напряжение питающей сети. При подключении катушки 21 управляемой муфты к напряжению сети создается магнитное поле, силовые линии которого проходят по магнитопроводу статора 4 вокруг катушки 21 далее через зазор попадают в магнитопровод ротора 5 и проходят вокруг кольца 17 из немагнитного материала, пересекая при этом щель 19, в которой располагаются выступ 14 статора 6 и ферромагнитный порошок 22, далее проходит между кольцами 17 и 16, потом через зазор и опять в магнитопровод статора 4. Под действием магнитного поля ферромагнитный порошок твердеет и создается тем самым жесткое соединение ротора 5 и статора 6. Далее обмотка 8 статора 4 подключается к питающей сети и создается вращающееся магнитное поле, частота вращения которого n1. Если ротор 5 неподвижен или вращается с частотой np1, меньшей n1, то вращающееся поле индуктирует в проводниках ротора 5 электродвижущую силу и по ним проходит ток, который, взаимодействуя с магнитным потоком, создает электромагнитный момент, увлекающий ротор 5 за вращающимся магнитным полем с частотой вращения np1 = (l-s1)n1, где s1 - скольжение первого аксиального электродвигателя.

После осуществления пуска первого аксиального электродвигателя на трехфазную обмотку 10 статора 6, вращающегося с частотой вращения np1, через скользящие контакты 23 подается напряжение питающей сети. Создается вращающееся магнитное поле, частота вращения которого nc2=n1+np1=n1+(l-s1)n1= (2-s1)n1, где n1 - частота вращения магнитного поля статора 6.

Если ротор 7 неподвижен или вращается с частотой np2, меньшей nc2, то вращающееся поле индуктирует в проводниках ротора 7 электродвижущую силу и по ним проходит ток, который, взаимодействуя с магнитным потоком, создает электромагнитный момент, увлекающий ротор 7 за вращающимся магнитным полем с частотой вращения.

np2= (l-s2)nc2=(l-s2)(2-s1)n1= (2-s1-s2+s2s1-s2)n1= [(2-s1-s2)-s2(l-s1)] n1, где s2 - скольжение второго аксиального электродвигателя.

Так как величина s2(l-s1) очень мала, то выражение для частоты вращения ротора 7 принимает вид np2=(2-s1-s2)n1.

По известной формуле мощность PMEX1, снимаемая с вала 3, будет равна

где p2 и 0 - угловые скорости вращения вала 3 и магнитного поля;
М - момент вращающегося магнитопровода 7 (ротора).

Для получения момента 2M и одинарной угловой скорости вращения на валу 3 необходимо отключить обмотку 21 и скользящие контакты 23 от напряжения питающей сети, затормозить статор 6, а потом подать напряжение питающей сети на катушку 20 управляемой муфты и скользящие контакты 23. Обмотка 21 отключается от питания, и ферромагнитный порошок размагничивается, разрушая жесткую связь между ротором 5 и статором 6. Когда на катушку 20 управляемой муфты подается питающее напряжение, она создает магнитное поле, силовые линии которого проходят по магнитопроводу статора 4 вокруг катушки 20, далее через зазор попадают в магнитопровод ротора 5 и проходят вокруг кольца 16 из немагнитного материала, пересекая при этом щель 18, в которой располагаются выступ металлической детали в виде стакана 15 и ферромагнитный порошок 22, далее проходит под кольцом 16, потом через зазор и опять в магнитопровод статора 4. Под действием магнитного поля ферромагнитный порошок твердеет и создается тем самым жесткое соединение ротора 5 с валом 3. Статор 6 тормозится, например, управляемой муфтой. Ротор 5 продолжает вращаться с частотой p1=(l-s1)n1. Так как статор 6 стал неподвижным, то его магнитное поле стало вращаться с частотой n1, а ротор 7 под действием электромагнитного момента М будет вращаться с частотой np2(l-s2)n1. На валу 3 будет иметь место частота вращения
np1,2=0.5(np1+np2)=0.5[(l-s1)n1+ (l-s1)n1]=0.5(2-s1-s2)n1.

Тогда по известной формуле мощность PMEX2, снимаемая с вала 3, будет равна

где p1,2 - угловая скорость вращения вала 3;
2M - двойной момент, созданный роторами 6 и 7.

В результате выводов получаем равенство механических мощностей
PMEX1=PMEX2.

Таким образом, данная конструкция позволяет снять с общего вала, который является выходным элементом электропривода, равные механические мощности для разных вариантов работы управляемого каскадного электрического привода - это двойная угловая скорость вращения вала при моменте М на валу и одинарная угловая скорость вращения вала при моменте 2M на валу.


Формула изобретения

Управляемый каскадный электрический привод, содержащий два соединенных соосно электродвигателя, отличающийся тем, что магнитные системы двух электродвигателей выполнены аксиальными и расположены в одном корпусе и на общем валу, который горизонтально закреплен в подшипниковых узлах корпуса, причем одной стороной статор первого электродвигателя жестко соединен с корпусом, а на другой его стороне между его трехфазной обмоткой и валовым отверстием расположены катушки управляемых муфт, находящиеся напротив двух колец малого и большого диаметров из немагнитного материала расположенного на подшипнике ротора первого электродвигателя, с другой стороны которого выполнены кольцеобразные щели, свободное пространство которых заполнено ферромагнитным порошком, статор второго электродвигателя расположен на подшипнике и имеет выступ в виде широкого тонкого кольца из того же материала, что и сам статор, и заходит в щель большого диаметра ротора первого электродвигателя, обеспечивая при подключении к сети одной катушки управляемой муфты жесткую связь ротора первого электродвигателя и статора второго электродвигателя, ротор которого жестко соединен с валом, причем между ротором первого и статором второго электродвигателя расположена металлическая деталь в виде полого стакана, выступом заходящая в щель малого диаметра ротора первого электродвигателя, обеспечивающая при подаче напряжения питающей сети в другую катушку управляемой муфты жесткую связь ротора первого электродвигателя с общим валом, который является выходным, а на статоре второго электродвигателя расположены скользящие контакты, на которые подается напряжение питающей сети.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области специальных электрических машин, а именно к конструкции электрических асинхронных герметизированных двигателей, используемых в промышленных установках для работы в химически агрессивных, радиационных и взрывоопасных газообразных и жидких средах, при высоких давлениях и температуре и содержащих герметизированные статоры

Изобретение относится к регулируемым асинхронным машинам, включающим в себя униполярные машины с жидкометаллическими контактами, и может быть использовано в качестве регулируемого электропривода или генератора переменного тока стабилизированных выходных параметров электроэнергии при переменной частоте вращения первичного двигателя

Изобретение относится к регулируемым асинхронным машинам, включающим в себя униполярные машины с жидкометаллическими контактами, и может быть использовано в качестве регулируемого электропривода или генератора переменного тока стабилизированных выходных параметров электроэнергии при переменной частоте вращения первичного двигателя

Изобретение относится к электроэнергетике и касается особенностей выполнения каскадных электрических приводов, в частности безредукторных, а также может быть использовано в любых других типах электрических двигателей

Изобретение относится к электротехнике

Изобретение относится к электротехнике и может быть использовано в подъемно-транспортных устройствах, на испытательных стендах и т.д

Изобретение относится к электротехнике , а именно к специальным электрическим машинам, и может быть использовано в оптико-электронных CHCTeivrax тепловидения или в специальных электромеханических системах

Изобретение относится к области электротехники, а именно к специальным электрическим машинам, и касается конструкций асинхронных генераторов (АГ) с самовозбуждением, используемых в установках автономного электроснабжения

Изобретение относится к области электротехники, в частности к каскадным электрическим приводам вращательного движения, и может быть использовано при создании безредукторных приводов с регулируемой частотой от 0 до двойной номинальной при постоянной номинальной скорости вращения, в том числе реверсивных и любых других типов приводов

Изобретение относится к области электротехники, в частности к электроприводам переменного тока, и может быть использовано в качестве электромеханического преобразователя для механизмов, имеющих упругую связь с неподвижной опорой

Изобретение относится к области электротехники, в частности к каскадным электрическим приводам вращательного движения, состоящим, например, из двух однотипных асинхронных двигателей, и может быть использовано при создании электрических приводов с регулируемой скоростью вращения от номинальной до двойной номинальной при постоянном моменте или приводов с удвоенным моментом при постоянной номинальной скорости вращения, а также при создании других типов электрических приводов

Изобретение относится к области электротехники, в частности к аксиальным каскадным электрическим приводам с жидкостным токосъемом, и может быть использовано при создании безредукторных аксиальных каскадных электрических приводов с регулируемой скоростью вращения

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения специальных электрических машин, а именно электрических асинхронных герметизированных двигателей, используемых в промышленных установках для работы в химически агрессивных, радиационных и взрывоопасных газообразных и жидких средах, при высоких значениях давления и температуры

Изобретение относится к области электротехники и может быть использовано в регулируемых электрических машинах переменного тока. Техническим результатом является снижение массогабаритных показателей и улучшение системы охлаждения и вентиляции. В электрической машине вторая обмотка якоря выполнена совмещенной, размещена в пазах статора основного магнитопровода и снабжена блоком конденсаторов. Вторая обмотка индуктора выполнена также совмещенной, многофазной, короткозамкнутой и размещена в пазах ротора основного магнитопрововода. Первая обмотка ротора соединена с тороидальными обмотками дополнительного магнитопровода ротора, первая обмотка статора подключена на выход блока преобразователя частоты, который преобразует электроэнергию частоты тока второй обмотки якоря в требуемое значение частоты управления и подает ее на обмотку статора основного магнитопровода для создания тока возбуждения и вращающегося электромагнитного поля данной частоты управления. Частота управления задается на выходе преобразователя частоты так, чтобы частота выходного тока была постоянной независимо от частоты вращения привода. 2 ил.

Изобретение относится к области специальных электрических машин, а именно к конструкции электрических асинхронных герметизированных двигателей, используемых в промышленных установках для работы в химически агрессивных, радиационных и взрывоопасных газообразных и жидких средах, при высоких давлениях и температуре. Технический результат изобретения направлен на расширение области применения и повышение энергетических характеристик и надежности двигательно-трансформаторного агрегата. Трансформаторная часть агрегата выполнена с первичной обмоткой, присоединенной к трехфазной сети, и со вторичной z-фазной стержневой обмоткой, расположенной в z пазах магнитопровода трансформатора, замкнутой с одной стороны короткозамыкающим кольцом. Двигательная часть агрегата содержит асинхронный двигатель с короткозамкнутым ротором и статором со стержневой обмоткой, электрически соединенной со вторичной обмоткой трансформатора, а с другой стороны замкнутой короткозамыкающим кольцом. Стержни вторичной обмотки трансформатора соединены с Z стержнями-гермовводами, расположенными в герметичной перегородке. Каждый стержень-гермоввод с другой стороны электрически соединен с n стержнями обмотки статора через промежуточные электропроводные дугообразные сегменты, примыкающие к статору (где n=1, 2,… - кратное число между стержнями обмотки статора и вторичной обмотки трансформатора). 1 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, в частности к электрическим машинам с несколькими роторами и статорами. Технический результат заключается в повышении надежности. Асинхронный электропривод с общим ротором содержит два соединенных соосно электродвигателя, магнитные системы которых выполнены аксиальными, расположены в одном корпусе и на одном валу, который горизонтально закреплен в подшипниковых узлах корпуса. Одной стороной статор первого электродвигателя жестко соединен с корпусом. Роторы обоих двигателей объединены в единую конструкцию, содержащую объединенный магнитопровод с радиальными пазами, расположенными с левой и правой стороны ротора, в которых расположена короткозамкнутая обмотка в виде беличьей клетки, витки которой проходят от левого замыкающего кольца, расположенного с левой внутренней стороны объединенного ротора, затем по левому пазу, потом по внешней стороне ротора, а затем по правому пазу к правому замыкающему кольцу, расположенному с правой внутренней стороны объединенного ротора. Статор второго электродвигателя жестко соединен с корпусом и своими зубцами повернут к зубцам статора первого электродвигателя. Обмотка статора второго электродвигателя подключена к реостатам, с помощью которых осуществляется изменение скорости вращения и момента управляемого каскадного электропривода. 1 ил.
Наверх