Способ получения фосгена

 

Изобретение предназначено для химической промышленности и может быть использовано при получении органических соединений. В реактор загружают катализатор, содержащий SiC с площадью поверхности не менее 10 м2/г. Нагревают до 300oС или менее, например до 150oС. Пропускают смесь СО и Cl2 в мольном отношении 1: 1 в течение 0,9-12 с. Полученный фосген содержит менее 40 млн-1 ССl4. Катализатор может быть получен нагреванием смеси SiО2 и Si до 1100-1400oС при р = 10-150 Па с образованием паров SiО в первой зоне реактора. Во второй зоне реактора пары SiО приводят в контакт с тонко измельченным реакционноспособным углеродом с площадью поверхности не менее 200 м2г-1 при 1100-1400oС. 3 з. п. ф-лы, 2 табл.

Изобретение относится к способу производства фосгена путем реакции хлора (Cl2) с окисью углерода (моноксид углерода) (CO) в присутствии катализатора. Более конкретно, настоящее изобретение относится к способу производства фосгена с минимальным получением опасного химического продукта - четыреххлористого углерода.

Предпосылки создания изобретения Получение фосгена посредством взаимодействия хлора с окисью углерода в присутствии углеродного катализатора является хорошо известным процессом. Фосген, полученный по этому способу, обычно содержит от 400 до 500 млн-1 по массе четыреххлористого углерода. Это количество, которое следует оценить исходя из общего количества производимого во всем мире фосгена, которое составляет около десяти миллиардов фунтов (4,5х109 кг), соответствует одновременному производству вместе с фосгеном приблизительно от 4 до 5 миллионов фунтов (от 1,8х106 до 2,3х106 кг) четыреххлористого углерода.

В публикации патента Японии (Kokoku) Patent No. Hei 6 [1994] -29129 раскрывается, что количество четыреххлористого углерода, вырабатываемого в процессе производства фосгена снижается приблизительно на 50% до около 150 млн-1 по массе за счет использования активированного углерода, который был промыт кислотой и который содержит металлические компоненты в общем количестве 1,5 мас. % или менее, состоящие из переходных металлов, бора, алюминия и кремния.

Как было показано, влияние четыреххлористого углерода потенциально может сказываться как на заметном истощении озонового слоя, так и на глобальном потеплении. Следовательно, существует интерес к тому, чтобы разработать процессы получения фосгена, в которых количество примеси четыреххлористого углерода сведено к минимуму.

Карбид кремния долгое время был известен как материал, который обладает термической и химической стабильностью, обладает отличными тепло- и электропроводящими свойствами, а также как абразив, почти столь же твердый, как и алмаз. Карбид кремния может быть получен в промышленных масштабах с использованием процесса Ачесона (Acheson process). Полученный таким образом продукт имеет площадь поверхности менее чем 1 м2/г; его использование в качестве носителя катализатора было ограничено отчасти низкой площадью его поверхности. Недавно были получены карбиды кремния с высокой площадью поверхности (от 60 до 400 м2/г) (M. J. Ledoux et al. , J. Catal. , 114, 176-185 (1988)). Эти материалы с высокой площадью поверхности используются в качестве подложек или носителей для катализаторов.

Краткое описание изобретения Предлагается способ получения фосгена, который включает приведение в контакт смеси, содержащей окись углерода и хлор, при температуре около 300oC или менее, с катализатором, содержащим карбид кремния и имеющим площадь поверхности, по меньшей мере, 10 м2г-1 .

Подробное описание изобретения Настоящее изобретение касается усовершенствования производства фосгена, получаемого путем приведения в контакт окиси углерода и хлора. Неожиданно обнаружено, что сам по себе карбид кремния может использоваться в качестве катализатора для производства фосгена. Усовершенствование может применяться в сочетании с рабочими условиями, используемыми для любого из процессов, основанных на применении углерода, ранее использовавшихся в промышленном производстве или описанных в технике (например, таких процессов, описанных в патентах США на получение фосгена N 4231959 и 4764308).

Фосген в промышленных масштабах производится посредством пропускания окиси углерода и хлора над активированным углеродом. Реакция является сильно экзотермической и обычно проводится в многотрубных реакторах, чтобы более эффективно контролировать температуру реакции. Окись углерода добавляют, по меньшей мере, в стехиометрическом количестве (часто в стехиометрическом избытке), чтобы минимизировать содержание свободного хлора в получаемом в качестве продукта фосгене.

Температуру реакции и карбид кремния выбирают таким образом, чтобы обеспечить получение фосгена, который содержит около 300 млн-1 (по массе) или менее четыреххлористого углерода. Предпочтительно, фосген содержит около 250 млн-1 (по массе) или менее четыреххлористого углерода; более предпочтительно, фосген содержит менее чем 100 млн-1 (по массе) или менее четыреххлористого углерода.

Любой кремнийсодержащий катализатор с площадью поверхности более чем около 10 м2/г (например, около 20 м2/г или более) может использоваться в процессе согласно настоящему изобретению. Однако композиции на основе карбида кремния, имеющие площадь поверхности более, чем около 100 м2/г, полученные посредством способов, описанных в патенте США N 4914070 (упомянутом здесь для сведения), являются особенно предпочтительными. Предпочтительным является содержание кремния, по меньшей мере, около 5% по массе. Более предпочтительно, содержание кремния составляет, по меньшей мере, около 10% по массе. Заслуживают внимания варианты реализации, в которых катализатор производится с использованием процесса, который включает приведение в контакт моноксида кремния с тонко измельченным углеродом (см. , например, патент США N 4914070). Для получения карбида кремния предпочтительным является использование углерода с содержанием золы менее, чем около 0,1% по массе.

Предпочтительный катализатор на основе карбида кремния готовят при помощи способа, включающего взаимодействие паров моноксида кремния SiO с углеродом посредством стадий: (а) создания паров SiO в первой зоне реакции путем нагревания смеси SiO2 и Si при температуре от 1100oC до 1400oC под давлением от 10 до 150 Па; и (b) приведения в контакт во второй зоне реакции при температуре от 1100oC до 1400oC паров SiO, созданных в указанной первой зоне реакции, с тонко измельченным реакционноспособным углеродом с удельной площадью поверхности, которая равняется или превышает 200 м2г-1. Примеры подходящих реакционноспособных разновидностей углерода включают частицы графита, полученные агломерацией порошка, и активированный углерод, как, например, измельченный в порошок активированный углерод, полученный путем дробления гранул активированного углерода.

Площадь поверхности карбида кремния, определенная при помощи измерений методом БЭТ, предпочтительно составляет более, чем около 100 м2/г и, более предпочтительно, более чем около 300 м2/г.

Из равновесия диссоциации известно, что при 100oC фосген содержит около 50 млн-1 хлора; и что при 200oC около 0,4%, при 300oC около 5% и при 400oC около 20% фосгена диссоциирует до окиси углерода и хлора. Кроме того, чем выше температура реакции, тем больше образуется четыреххлористого углерода. Соответственно температура реакции в общем случае составляет около 300oC или менее (например, в интервале от 40oC до 300oC). Предпочтительно, температура процесса составляет от около 50oC до 200oC; более предпочтительно, от около 50oC до 150oC. Фосген, произведенный при помощи способа согласно настоящему изобретению, обычно содержит около 300 млн-1 (по массе) или менее четыреххлористого углерода в отношении к фосгену (т. е. 300 частей по массе CCl4 на миллион частей COCl2 или менее) даже при температуре в 300oC. Предпочтительно, температуру реакции и разновидность карбида кремния выбирают таким образом, чтобы обеспечить получение фосгена, который содержит менее чем 250 млн-1 (по массе) четыреххлористого углерода; и более предпочтительно, выбирают таким образом, чтобы обеспечить получение фосгена, который содержит менее, чем 100 млн-1 (по массе) четыреххлористого углерода в отношении к фосгену. Заслуживают внимания варианты реализации, в которых время реакции и температура контролируются таким образом, чтобы обеспечить концентрацию четыреххлористого углерода в 100 млн-1 или менее в отношении к общему потоку продуктов.

Без дальнейших уточнений, предполагается, что квалифицированный специалист может, используя приведенное здесь описание, применить настоящее изобретение в его наиболее полной степени. Следовательно, подразумевается, что следующие предпочтительные конкретные варианты реализации являются только иллюстративными и не ограничивают остальную часть описания каким бы то ни было образом.

Примеры Следующие методики использовались в примере 1 и сравнительном примере A для испытания катализатора и для анализа продуктов.

Обычная методика испытания катализатора В качестве реактора использовали трубку из никелевого сплава Inconel 600 с размерами 1/2'' (1,27 мм) (внешний диаметр) х 15'' (381 мм), содержащую сито с ячейками 100 меш (0,015 мм) из никелевого сплава Monel. В реактор загружали от около 2,5 мл до около 8 мл катализатора на основе карбида кремния и нагревали до 300oC. Эта температура использовалась во всех примерах.

Смесь окиси углерода и хлора в мольном отношении 1: 1 пропускали над катализатором. Время контакта составляло от 0,9 до 12 секунд. Результаты экспериментов показаны в таблицах 1 и А.

Общая аналитическая методика Образцы выходящего из реактора потока отбирали в режиме "он-лайн" (в оперативном режиме) для анализа при помощи газового хроматографа Hewlett Packard HP 5890 с использованием колонки длиной 105 м и внутренним диаметром 0,25 мм, содержащей диметилполисилоксан марки RestakTM RTX-1 Crossbond 100%. Условия проведения газохроматографического анализа были следующие: 50oC в течение 10 минут с последующим программированием температуры до 200oC со скоростью 15oC в минуту.

Наименьшее количество четыреххлористого углерода, которое могло быть количественно определено, составляло около 40 млн-1 по массе для примера 1 и около 80 млн-1 по массе для сравнительного примера А. Результаты испытаний показаны в таблицах 1 и А.

Формула изобретения

1. Способ получения фосгена, включающий приведение в контакт смеси, содержащей СО и Cl2 при температуре около 300oС или менее, с катализатором, содержащим карбид кремния и имеющим площадь поверхности, по меньшей мере, 10 м2г-1.

2. Способ по п. 1, отличающийся тем, что катализатор изготовлен с использованием способа, который включает приведение в контакт моноксида кремния с тонко измельченным углеродом.

3. Способ по п. 2, отличающийся тем, что в углероде, используемом для получения карбида кремния, содержание золы составляет менее чем около 0,1% по массе.

4. Способ по п. 1, отличающийся тем, что карбид кремния получают при помощи (а) создания паров SiO в первой зоне реакции путем нагревания смеси SiO2 и Si при температуре от 1100oС до 1400oС под давлением от 10 до 150 Па; и (b) приведения в контакт во второй зоне реакции при температуре от 1100oС до 1400oС паров SiO, созданных в указанной первой зоне реакции, с тонко измельченным реакционноспособным углеродом с удельной площадью поверхности, которая равняется или превышает 200 м2г-1.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к химической промышленности, в частности к получению сырья в органических синтезах, например, изоцианатов и карбонатов

Изобретение относится к химической промышленности, в частности к получению сырья в органических синтезах, например, изоцианатов и карбонатов

Изобретение относится к химической промышленности и может использоваться в малотоннажных производствах высокомолекулярных материалов, биологически активных веществ, красителей, растворителей

Изобретение относится к области химической технологии получения фосгена

Изобретение относится к технологии получения фосгена

Изобретение относится к способу получения диарилкарбоната и переработке, по меньшей мере, одной части образованного при этом раствора, содержащего хлорид щелочных металлов, в находящемся ниже по технологической цепочке электролизе хлорида щелочных металлов, включающему следующие стадии: a) получение фосгена взаимодействием хлора с монооксидом углерода, b) взаимодействие фосгена, образованного согласно стадии a), c, по меньшей мере, одним монофенолом в присутствии основания, при необходимости, основного катализатора до диарилкарбоната и раствора, содержащего хлорид щелочных металлов, c) отделение содержащей образованный на стадии b) диарилкарбонат органической фазы и, по меньшей мере, одноразовая промывка содержащей диарилкарбонат органической фазы, d) отделение раствора, содержащего хлорид щелочных металлов, оставшегося согласно стадии с), от остатков растворителя и, при необходимости, остатков катализатора путем отпаривания раствора с водяным паром и обработкой адсорбентами, e) электрохимическое окисление, по меньшей мере, одной части раствора, содержащего хлорид щелочных металлов со стадии d) с образованием хлора, щелочи и, при необходимости, водорода, где при отделении d) раствора перед обработкой адсорбентами значение рН раствора устанавливают меньше или равно 8 и f) по меньшей мере, одну часть полученного согласно стадии e) хлора возвращают на получение фосгена согласно стадии a) и/или g) по меньшей мере, одну часть полученного согласно стадии e) раствора щелочи возвращают на получение диарилкарбоната согласно стадии b)

Изобретение относится к способу получения диарилкарбоната в сочетании с электролизом образующихся содержащих хлорид щелочного металла отработанных водных растворов. Способ получения диарилкарбоната и переработки, по крайней мере, одной части образующегося при этом содержащего хлорид щелочного металла раствора включает следующие стадии: а) взаимодействие фосгена, полученного при взаимодействии хлора с монооксидом углерода, с по крайней мере одним монофенолом в присутствии основания и, при необходимости, в присутствии основного катализатора с образованием диарилкарбоната и содержащего хлорид щелочного металла раствора, б) отделение и выделение образовавшегося на стадии а) диарилкарбоната, в) отделение остающегося после стадии б) содержащего хлорид щелочного металла раствора от остатков растворителя и, при необходимости, остатков катализатора с последующей обработкой адсорбентами, причем перед обработкой адсорбентами значение рН в содержащем хлорид щелочного металла растворе устанавливают равным 8 или менее 8, г) электрохимическое окисление, по крайней мере, одной части содержащего хлорид щелочного металла раствора со стадии в), протекающее с образованием хлора, раствора гидроксида щелочного металла и в соответствующем случае водорода, причем при этом по крайней мере одну часть полученного хлора используют для получения фосгена, и/или д) возвращение по крайней мере одной части полученного на стадии г) раствора гидроксида щелочного металла на стадию получения диарилкарбоната а), где по крайней мере часть образовавшегося на стадии в) содержащего хлорид щелочного металла раствора возвращают на стадию а). Соответствующий изобретению способ наряду с другими преимуществами обеспечивает улучшенную утилизацию с помощью электролиза образующегося при получении диарилкарбоната раствора, содержащего хлорид щелочного металла. 11 з.п. ф-лы, 4 пр.

Изобретение может быть использовано в химической промышленности при очистке отходящих потоков, образующихся в результате фосгенирования аминов с получением соответствующих изоцианатных компонентов. Проводят сепарацию исходного потока текучей среды, включающего в себя фосген и хлорид водорода, на, по меньшей мере, первый и второй потоки текучей среды. Первый поток текучей среды представляет собой обогащенный хлоридом водорода и обедненный фосгеном газообразный поток, а второй поток обеднен хлоридом водорода и обогащен фосгеном. Сепарацию осуществляют подачей указанного исходного потока в блок мембранной сепарации, снабженный по меньшей мере одним средством введения потока, по меньшей мере двумя средствами отведения отходящего потока и по меньшей мере одной сепарационной ячейкой. Каждая ячейка имеет питающий и два выходящих потока, представляющих собой концентрат и фильтрат. На стороне концентрата давление в диапазоне от 1,2-4 бар абсолютного давления, а на стороне фильтрата - 0,1-0,9 бар абсолютного давления. Изобретение позволяет уменьшить энергопотребление и повысить эффективность сепарации фосгена и хлорида водорода при непрерывной работе. 3 н. и 12 з.п. ф-лы, 13 ил., 2 табл.
Наверх