Способ получения диоксида урана

 

Изобретение относится к получению диоксида урана ядерного сорта. Технический результат: повышение качества диоксида урана за счет снижения примесей железа и никеля. Уранилтрикарбонат равномерно загружают во вращающуюся трубчатую печь. Температура в печи 700oС. В узел выгрузки диоксида урана противотоком подают водород с удельным расходом (0,062-0,091) нм3/ч на 1 кг UО2. Полученный диоксид урана содержит никель менее 310-3 мас. % и железо 5,510-3 мас. %.

Изобретение относится к ядерной энергетике, в частности к способу получения диоксида урана ядерного сорта.

Известен способ получения диоксида урана по патенту США N 4.292.279, МКИ C 01 G 043/00, 1981 г. , включающий обработку концентрата урана минеральной кислотой, получение аммоний уранилтрикарбоната, очистку органическим низшим спиртом или кетоном, фильтрацию и прокаливание аммония уранилтрикарбоната в среде водорода.

Недостатком данного способа является повышенное содержание примесей, обусловленное неоптимальным расходом водорода.

Наиболее близким по технической сущности и достигаемому результату (прототип) является (патент США N 3.519.403, МКИ C 01 G 43/02, 1970 г. ) способ получения диоксида урана, включающий получение аммония уранилтрикарбоната из гексафторида урана или водных растворов нитрата уранила, восстановление аммония уранилтрикарбоната в печи кипящего слоя до диоксида урана горячими газами - водородом в смеси с водяным паром. Удельный расход водорода составляет 0,12 нм3/ч кг.

Недостатком способа является высокий удельный расход водорода при получении диоксида урана, приводящий к высокому содержанию примесей железа и никеля в продукте.

Задача изобретения - повышение качества диоксида урана за счет снижения примесей железа и никеля.

Задача решается благодаря тому, что в способе получения диоксида урана из аммония уранилтрикарбоната путем нагревания и восстановления в среде водорода, согласно изобретению удельный расход водорода составляет 0,062 нм3/ч кг - 0,091 нм3/ч на 1 кг UO2.

Указанная совокупность признаков является новой и обладает изобретательским уровнем, так как удельный расход водорода только в указанных пределах позволяет получать продукт с низким содержанием железа и никеля.

Массовая доля примесей при производстве диоксида урана при одновременном термическом разложении аммония уранилтрикарбоната и восстановлении в среде водорода зависит от удельного расхода водорода на единицу массы получаемого диоксида урана.

К примесям, массовая доля которых зависит от удельного расхода водорода, относятся железо и никель. Указанные металлы входят в состав конструкционных материалов, из которых изготавливается оборудование для термического разложения и восстановления окислов урана до диоксида.

При разложении аммония уранилтрикарбоната выделяется двуокись углерода, которая в свою очередь взаимодействует с водородом с образованием окиси углерода Окись углерода в присутствии восстановителя H2 взаимодействует с железом и никелем с образованием карбонилов этих металлов Fe(CO)5, Ni(CO)4. Эти соединения в дальнейшем разлагаются и загрязняют конечный продукт - диоксид урана.

Способ осуществляется следующим образом.

Вращающуюся трубчатую печь нагревают до температуры 700oC, постепенно в течение 7 ч загружают в нее аммоний уранилтрикарбонат, противотоком подают водород с рассчитанным удельным расходом. Диоксид урана выгружают через узел выгрузки, а выделившиеся газы удаляют через систему очистки газов.

Примеры конкретного выполнения способа.

Пример 1.

В нагретую до температуры 700oC вращающуюся трубчатую печь в течение 7 ч загружают равномерно винтовым питателем 16,5 кг в (пересчете на диоксид урана) аммония уранилтрикарбоната. В узел выгрузки диоксида урана подают водород с удельным расходом 0,056 м3/ч на 1 кг UO2 (объемный расход 0,130 м3/ч). Образующие в процессе термического разложения аммония уранилтрикарбоната газы удаляются через систему очистки газов.

Полученный таким образом продукт имеет следующий химический состав, мас. %: уран 86,53; никель 4,210-2; железо 1,410-2.

Химический состав полученного продукта показывает, что удельного расхода водорода недостаточно, а массовая доля примесей высока и составляет более 100 ppm.

Пример 2.

В нагретую до температуры 700oC вращающуюся трубчатую печь в течение 7 ч загружают равномерно винтовым питателем 18,6 кг (в пересчете на диоксид урана) аммония уранилтрикарбоната. В узел выгрузки диоксида урана подают водород с удельным расходом 0,083 м3/ч на 1 кг UO2 (объемный расход 0,220 м3/ч).

Полученный продукт имеет следующий химический состав, мас. %: уран 87,45; никель < 3,010-3; железо 5,510-3.

Содержание примесей никеля и железа значительно снизилось.

Пример 3.

В нагретую до температуры 700oC вращающуюся трубчатую печь в течение 7 ч загружают равномерно винтовым питателем 18,3 кг (в пересчете на диоксид урана) аммония уранилтрикарбоната. В узел выгрузки диоксида урана подают водород с удельным расходом 0,111 м3/ч на 1 кг UO2 (объемный расход 0,290 м3/ч).

Полученный продукт имеет следующий химический состав, мас. %: уран 87,58; никель < 5,810-2; железо 1,410-2.

Повышенный расход водорода не приводит к увеличению выхода основного продукта и значительно увеличивает содержание железа и никеля.

Формула изобретения

Способ получения диоксида урана из аммония уранилтрикарбоната путем нагревания и восстановления в среде водорода при температуре 700оС, отличающийся тем, что расход водорода составляет 0,062 - 0,091 нм3/ч на кг UО2.



 

Похожие патенты:

Изобретение относится к способу получения смеси порошкообразных оксидов металлов, соответствующей реакционной способности и относящихся к ядерной промышленности, из нитратов металлов, которые находятся в виде водных растворов или смеси твердых веществ, которые являются естественными порошками или сделаны порошкообразными

Изобретение относится к способу изготовления таблеток ядерного топлива типа МОХ на основе смешанного оксида (U, Рu)О2, используемых в реакторах любого типа, особенно в водных ядерных реакторах, в частности в герметизированных водных реакторах

Изобретение относится к способам превращения гексафторида урана в оксид и устройствам для осуществления способа

Изобретение относится к области атомной промышленности и может использоваться для усовершенствования процесса получения спеченных таблеток из керамических материалов для ядерного топлива, в частности для получения спеченных таблеток из диоксида урана, применяемых для снаряжения тепловыделяющих элементов ядерных реакторов

Изобретение относится к технологии получения керамических изделий и может быть использовано в химической, атомной, электротехнической промышленности

Изобретение относится к вращающимся печам, в которых осуществляются газообразные реакции с целью получения твердого продукта

Изобретение относится к технологии получения диокисда урана и оксидных композиций на его основе, применяемых в ядерной технологии

Изобретение относится к способу получения таблеток ядерного топлива из фриттированного (спеченного) UO2 из металлического урана, полученного, в частности, путем лазерного изотопного обогащения, причем указанный способ не приводит к образованию жидких отходов

Изобретение относится к радиохимической промышленности и может быть использовано для производства оксидного уранового или смешанного оксидного уран-плутониевого топлива для реакторов на тепловых и быстрых нейтронах

Изобретение относится к производству ядерного топлива

Изобретение относится к технологии производства спеченных керамических топливных таблеток для ядерных реакторов, содержащих делящиеся материалы

Изобретение относится к области ядерной энергетики и может быть использовано для получения таблеток ядерного топлива на основе диоксида урана

Изобретение относится к ядерной энергетике и касается технологии получения порошков оксидов урана, используемых в качестве ядерного топлива, из компонентов с различным обогащением, в частности при использовании регенерированного топлива

Изобретение относится к технологии производства ядерных материалов и может быть использовано для получения порошка керамической двуокиси урана, обогащенной по изотопу 235U, порошка керамической двуокиси урана, содержащей выгорающий поглотитель, квазигомогенной смеси порошков оксида урана и плутония, урана и тория для производства МОХ-топлива (металлоксидного), переводу высокообогащенного урана в низкообогащенный или для извлечения фтора из "отвального" гексафторида урана

Изобретение относится к области атомной промышленности и может быть использовано на предприятиях изготовления спеченных таблеток из керамических материалов ядерного топлива, в частности для получения спеченных таблеток из диоксида урана, применяемых для снаряжения тепловыделяющих элементов (ТВЭЛ) и сборки их в тепловыделяющую сборку (ТВС) для ядерного реактора

Изобретение относится к технологии получения оксидов урана из гексафторида урана за счет взаимодействия гексафторида урана любой степени обогащения по изотопу U235 с водородом в кислород-водородном пламени и является первым этапом получения любых оксидов урана в зависимости от последующей стадии переработки

Изобретение относится к усовершенствованному способу гидрометаллургической переработки твердых урансодержащих отходов сублиматного производства

Изобретение относится к способу подготовки порошка диоксида урана с физико-химическими свойствами, пригодными для получения уранового и плутониевого смешанного оксидного ядерного топлива, используемого в ядерных реакторах на легкой воде
Наверх