Сталь

 

Изобретение относится к металлургии, а именно к составам сталей для магистральных нефтепроводов и газопроводов. Предложена сталь, которая содержит компоненты в следующем соотношении, мас. %: углерод 0,05-0,15, кремний 0,30-0,90, марганец 0,40-0,90, ванадий 0,05-0,20, ниобий 0,01-0,08, алюминий 0,01-0,08, сера 0,001-0,020, фосфор 0,005-0,02, титан 0,001-0,04, железо - остальное. Техническим результатом изобретения является повышение коррозионной стойкости и ударной вязкости стали. 3 табл.

Изобретение относится к металлургии, а именно к составам сталей для магистральных нефтепроводов и газопроводов.

Сталь, используемая при изготовлении труб для магистральных нефтепроводов и газопроводов, должна сочетать высокие механические и антикоррозионные свойства. Техническое соглашение ТС-105-21-98 регламентирует следующий комплекс свойств (табл. 1).

Известна сталь [1] , имеющая следующий химический состав, мас. %: Углерод - 0,06-0,10 Кремний - 0,17-0,37 Марганец - 1,0-1,6 Молибден - 0,3-0,5 Ванадий - 0,05-0,1 Алюминий - 0,02-0,05 Церий - 0,0005-0,005 Кальций - 0,0005-0,005 Железо - Остальное
Недостаток известной стали состоит в том, что она имеет низкие показатели коррозионной стойкости и ударной вязкости (при -60oC).

Известна также конструкционная сталь следующего химического состава, мас. % [2] :
Углерод - 0,15-0,35
Кремний - 0,15-1,0
Марганец - 0,4-1,5
Ванадий - 0,04-0,18
Ниобий - 0,008-0,1
Алюминий - 0,02-0,15
РЗМ - 0,002-0,2
Железо - Остальное
Известная конструкционная сталь по коррозионной стойкости и ударной вязкости не соответствует требованиям, предъявляемым к сталям для магистральных нефтепроводов и газопроводов.

Наиболее близкой по своему химическому составу и свойствам к предлагаемой стали является сталь [3] , содержащая, мас. %:
Углерод - 0,08-0,16
Кремний - 0,17-0,37
Марганец - 1,40-1,70
Ванадий - 0,06-0,12
Ниобий - 0,06-0,12
Алюминий - 0,015-0,04
Сера - 0,015-0,035
Фосфор - 0,010-0,030
Бор - 0,0008-0,004
Церий - 0,005-0,01
Железо - Остальное (прототип)
Известная сталь имеет низкие коррозионную стойкость и ударную вязкость.

Техническая задача, решаемая предлагаемым изобретением, состоит в повышении коррозионной стойкости и ударной вязкости стали.

Для решения этой технической задачи сталь, содержащая углерод, кремний, марганец, ванадий, ниобий, алюминий, серу, фосфор и железо, дополнительно содержит титан при следующем соотношении компонентов, мас. %:
Углерод - 0,05-0,15
Кремний - 0,30-0,90
Марганец - 0,40-0,90
Ванадий - 0,05-0,20
Ниобий - 0,01-0,08
Алюминий - 0,01-0,08
Сера - 0,001-0,02
Фосфор - 0,005-0,02
Титан - 0,001-0,04
Железо - Остальное
Сопоставление известного состава стали, принятой в качестве прототипа [3] , и предложенной показывает, что содержания в них углерода, кремния, ванадия, ниобия, алюминия, серы и фосфора полностью или частично взаимно перекрываются. Предложенная сталь дополнительно содержит 0,001-0,04% титана и меньшее количество марганца. За счет этого обеспечивается повышение коррозионной стойкости и ударной вязкости стали.

Углерод в стали предложенного состава определяет ее прочность. Снижение содержания углерода менее 0,05% приводит к снижению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,15% ухудшает пластичность и вязкость стали.

Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства. Раскисление стали кремнием протекает по реакции:
2FeO + Si ---> 2Fe + SiO2.

При содержании кремния менее 0,3% прочность стали недостаточна. Увеличение содержания кремния более 0,9% приводит к возрастанию количества силикатных включений, охрупчивает сталь, ухудшает ее пластичность.

Марганец введен для раскисления и повышения прочности стали. Раскисляющее действие марганца описывает химическая реакция:
FeO + Mn ---> MnO + Fe.

При содержании марганца менее 0,40% имеет место снижение прочностных и вязкостных свойств. Увеличение содержания этого элемента более 0,90% ухудшает пластичность стали до 5< 24% , что недопустимо.

Ванадий является карбидообразующим элементом в данной стали. Измельчая зерно, он улучшает свариваемость, прочность и вязкость стали. При содержании ванадия менее 0,05% его положительное воздействие не проявляется. Увеличение содержания ванадия более 0,20% оказалось нецелесообразным, т. к. не приводило к улучшению свойств стали.

Ниобий является эффективным карбидообразователем, измельчающим зерна микроструктуры. При содержании ниобия менее 0,01% ударная вязкость стали ниже допустимой. Увеличение содержания ниобия более 0,08% приводит к его выделению на границах зерен в виде интерметаллических соединений. Это ухудшает свойства стали.

Алюминий является раскисляющим и модифицирующим элементом. Кроме того, он связывает азот в нитриды. При содержании алюминия менее 0,01% его воздействие проявляется слабо, сталь имеет низкие механические свойства. Увеличение содержания алюминия более 0,08% приводит к графитизации стали, потере прочности и ухудшению свариваемости.

Сера, присутствующая в стали, образует сульфиды марганца. При содержании серы 0,001-0,02% она проявляет "сульфидный эффект", понижая порог хладноломкости. Снижение содержания серы менее 0,001% приводит к повышению порога хладноломкости. Увеличение содержания серы более 0,02% ухудшает вязкостные, прочностные и пластические свойства стали ниже допустимого уровня, особенно в направлении поперек направления прокатки штрипса.

Фосфор в количестве 0,005-0,02% целиком растворяется в -железе, что приводит к упрочнению металлической матрицы, повышению коррозионной стойкости стали. Однако увеличение содержания фосфора более 0,02% вызывает охрупчивание стали и снижение показателя ударной вязкости, что недопустимо. Уменьшение содержания фосфора менее 0,005%, во-первых, ухудшает коррозионную стойкость стали и, во-вторых, экономически нецелесообразно.

Введение в рассматриваемую сталь титана обеспечило повышение ее коррозионной стойкости и ударной вязкости. При содержании титана менее 0,001% ухудшается коррозионная стойкость: скорость общей коррозии стали Q > 0,8 мм/год, CLR > 4, CTP > 6. Увеличение содержания титана сверх 0,10% ухудшает комплекс механических свойств стали, приводит к образованию подкорковой пористости у поверхности слитка и снижению качества горячекатаных штрипсов.

В табл. 2 приведен химический состав сталей с различным содержанием легирующих элементов, а в табл. 3 - результаты испытаний свойств этих сталей.

Из табл. 2 и 3 следует, что сталь предложенного состава (составы N 2 и N 4) имеет наиболее высокие показатели коррозионной стойкости и ударной вязкости, сталь пригодна для изготовления труб магистральных нефтепроводов и газопроводов. В случаях запредельных значений содержания легирующих элементов (составы N 1 и N 5) коррозионная стойкость и ударная вязкость снижаются. Также более низкими коррозионной стойкостью и ударной вязкостью обладает сталь-прототип (состав N 6).

Технико-экономические преимущества предложенной стали заключаются в том, что дополнительное введение в ее состав 0,001- 0,04% титана при регламентированном содержании остальных элементов обеспечивает формирование благоприятной микроструктуры, имеющей высокие коррозионную стойкость и вязкостные свойства при регламентированном сочетании прочности и пластичности. Предложенная сталь также характеризуется хорошей свариваемостью. Поэтому она пригодна для изготовления нефтепроводов и газопроводов, срок безаварийной работы которых будет увеличен.

В качестве базового объекта выбрана сталь-прототип. Использование предложенной стали позволит повысить рентабельность производства электросварных труб на 10-15%.

Литература
1. Патент Российской Федерации N 2100470, МПК С 22 С 38/12, 1997 г.

2. Авт. св. СССР N 753924, МПК С 22 С 38/12, 1980 г.

3. Авт. св. СССР N 1523589, МПК С 22 С 38/12, 1989 г. - прототип.


Формула изобретения

Сталь, содержащая углерод, кремний, марганец, ванадий, ниобий, алюминий, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит титан при следующем соотношении компонентов, мас. %:
Углерод - 0,05 - 0,15
Кремний - 0,30 - 0,90
Марганец - 0,40 - 0,90
Ванадий - 0,05 - 0,20
Ниобий - 0,01 - 0,08
Алюминий - 0,01 - 0,08
Сера - 0,001 - 0,020
Фосфор - 0,005 - 0,02
Титан - 0,001 - 0,04
Железо - Остальное

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к черной металлургии, а именно к стали, используемой, например, для арматурного литья, и к способу производства такой стали

Изобретение относится к металлургии, конкретно к разработке высокопрочных инварных сплавов с минимальным значением температурного коэффициента линейного расширения (ТКЛР) ниже 2,510-6 K-1

Изобретение относится к высокопрочной стали и ее производству

Изобретение относится к высокопрочной стали, используемой в строительстве и для изготовления труб, и к производству этой стали

Сталь // 2144094
Изобретение относится к области металлургии, в частности к составам инструментальных сталей, которые могут найти применение при изготовлении деталей, работающих в условиях термоциклического нагружениях (ТЦН)

Изобретение относится к области металлургии, конкретнее к ультравысокопрочной с низким коэффициентом текучести стали для магистральных труб, имеющей повышенную низкотемпературную НАZ вязкость и свариваемость на месте и предел прочности по крайней мере 950 МПа, превышающий Х100 API стандарта

Изобретение относится к области металлургии, конкретнее к высокопрочным свариваемым сталям

Изобретение относится к металлургии в частности к разработке конструкционной высокопрочной стали для изготовления сортовых заготовок, используемых при холодной высадке крепежных изделий

Изобретение относится к металлургии в частности к разработке конструкционной стали для изготовления сортовых заготовок, используемых при холодной высадке крепежных изделий

Изобретение относится к стали для изготовления деталей холодной пластической деформацией, например холодной ковкой, штамповкой или волочением, без предварительной сфероидизирующей или смягчающей обработки

Изобретение относится к металлургии, а именно изысканию сверхпрочной свариваемой толстолистовой стали, которую используют для изготовления трубопроводов

Изобретение относится к толстолистовой стали для трубопроводов, имеющей прочность на растяжение по меньшей мере 930 МПа, энергию удара, измеренную в испытании образцов с V-надрезом по Шарпи при -40oС, по меньшей мере 120 Дж, и микроструктуру, содержащую по меньшей мере 90 об.% смеси мелкозернистого нижнего бейнита и мелкозернистого сетчатого мартенсита, в которой по меньшей мере 2/3 указанной смеси содержат мелкозернистый нижний бейнит, образованный из нерекристаллизованного аустенита, имеющего средний размер зерен меньше 10 мкм, и содержащей, вес.%: углерод 0,05-0,1; марганец 1,7-2,1; никель 0,2-1,0; ниобий 0,01-0,1; титан 0,005-0,03; сера менее 0,003; фосфор менее 0,015; молибден 0,25-0,6; железо - остальное

Изобретение относится к металлургии, в частности к получению борсодержащей стали с высокой прочностью, имеющей прочность на разрыв по меньшей мере 900 МПа, ударную вязкость, измеренную с помощью ударного теста с V-образным надрезом по Шарпи при температуре -40oС по меньшей мере 120 Дж и микроструктуру, содержащую преимущественно мелкозернистый нижний бейнит, мелкозернистый реечный мартенсит или их смесь, образованную из, по существу, неперерекристаллизованных зерен аустенита и содержащей компоненты в следующем соотношении, мас.%: углерод 0,03-0,10, марганец 1,6-2,1, ниобий 0,01-0,1, ванадий 0,01-0,1, молибден 0,2-0,5, титан 0,005-0,03, бор 0,0005-0,002, железо - остальное

Изобретение относится к металлургии, а именно к составам высокопрочных мартенситностареющих сталей, а также к изделиям, выполненным из них

Изобретение относится к металлургии, в частности к разработке конструкционной штампуемой высокопрочной стали, предназначенной для изготовления сложнопрофильных термоулучшаемых деталей методом холодной объемной штамповки

Изобретение относится к металлургии, в частности к разработке конструкционной экономнолегированной стали с двухфазной ферритомартенситной структурой, используемой при холодной высадке высокопрочных стержневых крепежных деталей

Изобретение относится к области металлургии, в частности к производству лигатуры, содержащей титан, кремний и железо

Изобретение относится к металлургии, в частности, к хладостойким сталям, применяемым в энергетической промышленности при изготовлении транспортных контейнеров для перевозки и хранения отработанного ядерного топлива

Изобретение относится к черной металлургии, а именно к составу низкоуглеродистых холоднокатаных сталей, предназначенных для изготовления изделий сложной конфигурации, преимущественно деталей автомобиля, в том числе с защитными покрытиями
Наверх