Способ диагностики помпажа компрессора газотурбинного двигателя

 

Изобретение относится к области раннего обнаружения неустойчивой работы газотурбинного двигателя (ГТД), в частности помпажа компрессора, характеризуемого сильными низкочастотными колебаниями параметров потока в проточной части ГТД, и позволяет повысить быстродействие и достоверность диагностики помпажа компрессора ГТД за счет более раннего определения начальной стадии помпажа на основе информации о динамике изменения контролируемых параметров. В способе диагностики помпажа компрессора газотурбинного двигателя, включающем измерение яркостной температуры Т излучения поверхностей элементов конструкции газотурбинного двигателя, сравнение величины Т с ее пороговым параметром Тпорог, согласно изобретению дополнительно определяют величину производной первого порядка по времени яркостной температуры излучения dТ/d, сравнивают ее с пороговым параметром А и при превышении величин Т и dТ/d над Тпорог и А соответственно формируют сигнал о начале помпажа компрессора. 13 з.п. ф-лы, 2 ил.

Изобретение относится к области раннего обнаружения неустойчивой работы газотурбинного двигателя (ГТД), в частности помпажа компрессора, характеризуемого сильными низкочастотными колебаниями параметров потока в проточной части ГТД.

Широко известны способы диагностики помпажа компрессоров ГТД, в которых контролируемыми параметрами служат, например, полное давление воздуха за компрессором высокого давления (Рквд), частоты вращения роторов высокого и низкого давлений (nвд, nнд) либо температура торможения газов за турбиной низкого давления (Ттнд) [1, 2, 3, 4].

В известных способах использован принцип измерения контролируемого параметра и/или его производных, относительной величины, сравнения фактической величины параметра и/или производных относительной величины с их предельно допустимыми (пороговыми) значениями, при превышении фактической величины над соответствующими пороговыми значениями подается сигнал критической ситуации, свидетельствующий о потере газодинамической устойчивости.

Однако известные способы не обеспечивают достаточно точное и своевременное обнаружение помпажа и необходимую достоверность выявления ранних стадий помпажа компрессора ГТД. В ряде случаев наблюдались ложные срабатывания противопомпажной системы (например, при отказах электропроводки датчиков двигателя, сбоев вычислительных устройств, работающих по однопараметрическим критериям выявления помпажа, поломки трубопровода подвода воздуха). Кроме того, как указано в [5], "момент времени, соответствующий началу регистрации падения полного давления неподвижным (типовым) датчиком давления, запаздывает по сравнению с моментом начала срыва на время, равное длительности провала" давления при срыве.

Наиболее близким к заявляемому является способ диагностики помпажа компрессора газотурбинного двигателя НК-8-2У с использованием методов оптической пирометрии с фиксацией текущей яркостной температуры излучения нагретой поверхности роторных лопаток турбины ГТД [6]. В известном способе диагностики с помощью оптического пирометра измеряли яркостную температуру излучения Т, сравнивали ее текущее значение с пороговым для заданной поверхности роторных лопаток турбины Тпорог, выше которого эксплуатация двигателя запрещена, тем самым подтверждали помпаж компрессора ГТД. В основе этого способа лежит чувствительность оптического пирометра к излучению высокотемпературных сажистых образований, неизбежно образующихся при помпаже и имеющих непрерывный спектр излучения, включая диапазон рабочих волн фотоприемника оптического пирометра.

Однако известный способ также не обладает достаточным быстродействием и достоверностью диагностики процесса помпажа из-за недостаточной динамики изменения параметра Т и возможного превышения Т над Тпорог в ситуациях, не связанных с помпажем компрессора (например, при кратковременном тепловом перегреве турбины из-за неудовлетворительной работы системы защиты турбины от перегрева). В ряде случаев, например, при помпаже на режиме "малый газ" параметр Т не достигает Тпорог при первом помпажном колебании, что приводит к несрабатыванию противопомпажной системы, а следовательно - к продолжению помпажа и возможной поломке компрессора, перегреву турбины, отказу двигателя в целом.

Техническая задача, решаемая изобретением, заключается в повышении быстродействия и достоверности диагностики помпажа компрессора ГТД за счет более раннего определения начальной стадии помпажа на основе информации о динамике изменения контролируемых параметров.

Сущность изобретения заключается в том, что в способе диагностики помпажа компрессора газотурбинного двигателя, включающем измерение яркостной температуры Т излучения поверхностей элементов конструкции газотурбинного двигателя, сравнение величины Т с ее пороговым параметром Тпорог, согласно изобретению, дополнительно определяют величину производной первого порядка по времени яркостной температуры излучения dT/d, сравнивают ее с пороговым параметром А, и при превышении величин Т и dT/d над Тпорог и А соответственно, формируют сигнал о начале помпажа компрессора.

Как следует из графиков а и б на фиг.1 к моменту достижения параметра Рк/Рк, по которому ранее определяли помпажное состояние двигателя ПС-90А (точка D на графике 1а), параметр Т увеличивался на величину ~130oС за 0,07 с и был равным ~1060oС. Значение Т превысило Тпорог, при этом величина производной первого порядка по времени dT/d достигло значений 1770oС/сек. Как видно из графика 1в, динамика изменения параметра dT/d являлась более показательной. Величина dT/d для начального этапа помпажа составляет 1000oС/сек, что на порядок превосходит значение dT/d100oС/сек, обычно наблюдаемое при штатных (беспомпажных) режимах работы ГТД, например, после резких увеличений режима работы, в том числе приемистостях "Малый газ - Максимальный режим" или иных динамических процессов, связанных с организацией максимальных избытков топлива в камеру сгорания. Такое различие в динамике позволяет безошибочно диагностировать начальный этап помпажа компрессора. Таким образом, критерий dT/d является более показательным, чем Т.

Элементами конструкции ГТД, с поверхности которых осуществляют измерение яркостной температуры Т, могут служить детали компрессора, камеры сгорания, а также турбины, а именно роторные лопатки турбины, и более конкретно - роторные лопатки турбины первой по потоку от камеры сгорания ступени компрессора.

Дополнительно, с целью повышения достоверности диагностики целесообразно осуществлять измерение параметра Т по меньшей мере на двух участках поверхности элемента ГТД, что исключает ложные срабатывания, например, при локальной неисправности камеры сгорания.

С целью еще большего повышения быстродействия дополнительно после определения величины dT/d осуществляют вычисление производной второго порядка d2T/d2 (фиг.1г), сравнивают ее значение с соответствующим пороговым параметром В, а сигнал о начале помпажа формируют в случае, когда dT/d>А, и/или d2T/d2>В, и/или Т>Тпорог, тем самым обеспечивая диагностику не только самого помпажа, но и предпомпажного состояния компрессора ГТД.

С целью выявления факта начала помпажа в более широком диапазоне режимов и для различных типов ГТД величину яркостной температуры излучения с поверхностей элементов конструкции газотурбинного двигателя корректируют согласно формуле: Тr=аТ+bdT/d, где Tr - скорректированная величина яркостной температуры; a, b - весовые коэффициенты, зависящие от типа двигателя, затем величину Tr сравнивают с соответствующим пороговым параметром С, при Тr>С формируют сигнал о начале помпажа.

Представленные на фиг.1а, в графики показывают, что для дополнительного повышения быстродействия и достоверности диагностики помпажа целесообразно дополнительно осуществлять измерение величины давления воздуха за компрессором Рк и величины производной первого порядка по времени dPк/d, сравнивать значение Рк с соответствующим пороговым параметром Е, а сигнал о начале помпажа формировать в случае, когда dPк/d>E и dT/d>A. При этом величина Е меньше, чем величина D на 30...70%.

Учет теплонапряженности ГТД при диагностике двигателя необходим также для повышения достоверности информации, для чего производные по времени и пороговые параметры корректируют в зависимости от теплонапряженности двигателя.

Наиболее точные результаты измерения яркостной температуры Т поверхностей элементов конструкции могут быть получены в случае использования фотоэлектрического приемника излучения, работающего в диапазоне волн излучения 0,2. . . 1,2 мкм, в котором чувствительным элементом служит преимущественно кремниевый фотодиод.

Предлагаемый способ позволяет диагностировать помпаж раньше на 0,02-0,06 сек, чем по известным способам. Этот фактор является решающим при помпажных частотах 8...20 Гц, как обеспечивающий более раннюю диагностику помпажа компрессора.

Изобретение иллюстрируется следующими фигурами.

На фиг. 1 а, б, в, г, представлены графики зависимости величин контролируемых параметров соответственно Рк, Т, dT/d, d2Т/d2 от времени () для двигателя ПС-90А.

На фиг. 2 показана структурная схема, реализующая предлагаемый способ диагностики согласно п.1 формулы изобретения.

Блок 1 представляет собой дифференцирующий блок, на вход которого поступает сигнал о величине параметра Т, измеряемого оптическим пирометром. В блоке 1 осуществляется вычисление первой производной по времени параметра Т (dT/d).

Блок 2 представляет собой блок сравнения, который осуществляет сравнение текущего значения Т с его пороговым параметром Тпорог.

В блоке 3 осуществляется сравнение текущего значения dT/d с параметром А, представляющим собой пороговое значение параметра dT/d при помпаже двигателя.

Логический блок 3 работает по схеме "И". При одновременном наличии на двух входах блока 4 сигналов, поступающих с блоков 2 и 3, на выходе блока 4 формируется сигнал, соответствующий состоянию помпажа компрессора двигателя.

Способ диагностики помпажа компрессора ГТД осуществляется следующим образом.

Диагностику проводили на двухроторном газотурбинном авиационном двигателе ПС-90А в натурных условиях (R=16000 кгс; к=32; Tсa=1640 К; m=5,2). Двигатель был оборудован двумя оптическими пирометрами типа ОПП-94К-1,25. Принцип и технология работы пирометра на двигателе ПС-90А основаны на восприятии и преобразовании теплового излучения нагретых лопаток первой ступени ротора турбины высокого давления в электрический сигнал. Область спектральной чувствительности фотоприемника (кремниевого фотодиода типа ФД-8К) пирометра составляет 0,4...1,1 мкм.

Помпажи задавались: - перепуском воздуха на вход в одну из промежуточных ступеней компрессора, - при ветре в сопло со скоростью, превышающей допустимые эксплутационные нормы и т.д.

При резком изменении режима работы двигателя оптический пирометр фиксирует яркостную температуру излучения Т, сигнал о величине Т из блока 1 поступает на вход блока 2, где осуществляется сравнение текущего значения Т с параметром Тпорог. Дифференцирующий блок 1 осуществляет вычисление производной первого порядка dT/d и выдает сигнал на вход блока сравнения 3, в котором идет сравнение текущего значения dT/d с пороговым параметром А, определенным для данного типа двигателя ПС-90А (1700oС/сек). В случае превышения текущих значений параметров Т и dT/d над их пороговыми параметрами сигналы поступают на вход логического блока 4 "И", который при их наличии посылает сигнал, соответствующий состоянию помпажа компрессора двигателя.

Эта операция осуществляется за время ~0,02...0,04 сек, что является достаточным для принятия решений о предотвращении помпажа компрессора.

Источники информации 1. Автоматический контроль и диагностика систем управления силовыми установками летательных аппаратов, Москва. "Машиностроение", 1989, стр. 102.

2. Патент РФ 2098668, F 04 D 27/02, 1998 г.

3. Патент WО 9634207, F 04 D 27/02, 1996 г.

4. Патент US 5402632, F 02 С 9/16, 1995 г.

5. Нестационарные явления в турбомашинах (численное моделирование и эксперимент). Под общей редакцией д.т.н., профессора В.Г. Августиновича, Екатеринбург, 1999, стр. 242.

6. Тезисы докладов всесоюзной научной конференции. Методы и средства машинной диагностики газотурбинных двигателей и их элементов, т. 2, Харьков, октябрь, 1980, стр. 221.

Формула изобретения

1. Способ диагностики помпажа компрессора газотурбинного двигателя, включающий измерение яркостной температуры Т излучения поверхностей элементов конструкции газотурбинного двигателя, сравнение величины Т с ее пороговым параметром Тпорог, отличающийся тем, что дополнительно определяют величину производной первого порядка по времени яркостной температуры излучения dT/d, сравнивают ее с пороговым параметром А и при превышении величин Т и dT/d над Тпорог и А соответственно формируют сигнал о начале помпажа компрессора.

2. Способ по п.1, отличающийся тем, что измерение яркостной температуры излучения Т осуществляют с поверхностей деталей турбины.

3. Способ по п.2, отличающийся тем, что измерение яркостной температуры осуществляют с поверхности роторной лопатки турбины.

4. Способ по п.3, отличающийся тем, что измерение яркостной температуры осуществляют с поверхности роторной лопатки первой по потоку от камеры сгорания ступени турбины.

5. Способ по п.1, отличающийся тем, что измерение яркостной температуры осуществляют с поверхностей деталей камеры сгорания.

6. Способ по п.1, отличающийся тем, что измерение яркостной температуры осуществляют с поверхностей деталей компрессора.

7. Способ по п.1, отличающийся тем, что измерение яркостной температуры излучения осуществляют с двух и более участков поверхности элемента конструкции газотурбинного двигателя.

8. Способ по п.1, отличающийся тем, что дополнительно после определения величины dT/d осуществляют вычисление производной второго порядка d2T/d2, сравнивают ее значение с соответствующим пороговым параметром В, а сигнал о начале помпажа формируют в случае, когда dT/d>A, и/или d2T/d2>B, и/или Т>Тпорог.

9. Способ по п.1, отличающийся тем, что величину яркостной температуры излучения с поверхностей элементов конструкции газотурбинного двигателя корректируют согласно формуле Тr=aT+bdT/d,
где Тr - скорректированная величина яркостной температуры;
а, b - весовые коэффициенты, зависящие от типа двигателя,
затем величину Tr сравнивают с соответствующим пороговым параметром С, при Tr>C формируют сигнал о начале помпажа.

10. Способ по п. 1, отличающийся тем, что дополнительно осуществляют измерение величины давления воздуха за компрессором Рк, определяют величину производной первого порядка по времени dPк/d, сравнивают ее значение с соответствующим пороговым параметром Е, а сигнал о начале помпажа формируют в случае, когда dPк/d>Е и dТ/d>A.

11. Способ по пп.1-10, отличающийся тем, что весовые коэффициенты, производные по времени и/или пороговые параметры корректируют в зависимости от теплонапряженности двигателя.

12. Способ по п.1, отличающийся тем, что измерение яркостной температуры излучения осуществляют в диапазоне волн излучения 0,2-1,2 мкм.

13. Способ по п.12, отличающийся тем, что измерение яркостной температуры излучения осуществляют фотоэлектрическим или тепловым приемником излучения.

14. Способ по п.13, отличающийся тем, что в качестве чувствительного элемента фотоэлектрического приемника излучения используют преимущественно кремниевый фотодиод.

РИСУНКИ

Рисунок 1, Рисунок 2

QZ4A - Регистрация изменений (дополнений) лицензионного договора на использование изобретения

Лицензиар(ы): Открытое акционерное общество "Авиадвигатель"

Вид лицензии*: НИЛ

Лицензиат(ы): Открытое акционерное общество "Пермский моторный завод"

Характер внесенных изменений (дополнений):
Из предмета договора РД0004722 исключены патенты на изобретения 2187023, 2193678, 2198311, 2199680, 2204723, 2211337, 2220285, 2225945, 2227232, 2230195. Изменены порядок оплаты и размер вознаграждения.

Дата и номер государственной регистрации договора, в который внесены изменения:
06.12.2005 № РД0004722

Извещение опубликовано: 27.08.2010        БИ: 24/2010

* ИЛ - исключительная лицензия НИЛ - неисключительная лицензия



 

Похожие патенты:

Изобретение относится к двигателестроению, в частности к испытаниям топливной дизельной аппаратуры

Изобретение относится к двигателестроению и может быть использовано для экспресс-анализа и измерения угла зажигания, снятия характеристики регулятора опережения зажигания

Изобретение относится к области технической диагностики и может быть использовано для определения технического состояния отдельных цилиндров (цилиндро-поршневой группы) в двигателе внутреннего сгорания путем измерения разрежения в надпоршневом пространстве

Изобретение относится к способам определения массового расхода воздуха в двигателях внутреннего сгорания (ДВС), в частности для определения циклового массового наполнения воздухом конкретной рабочей камеры ДВС, и может быть использовано в системах управления ДВС

Изобретение относится к двигателестроению, в частности к испытаниям колесного и гусеничного транспортного средства (ТС) и его силовой установки (двигателя)

Изобретение относится к двигателестроению, в частности к измерительной технике, и может быть использовано для определения технического состояния двигателей внутреннего сгорания в эксплуатационных условиях

Изобретение относится к машиностроительной промышленности и, в частности, к производству установок для испытания форсунок

Изобретение относится к области управления работой газоперекачивающих агрегатов газокомпрессорного цеха при обеспечении транспортировки газа

Изобретение относится к компрессорам газотурбинных двигателей авиационного или наземного применения и позволяет повысить надежность двигателя путем сброса загрязнений и уменьшения неравномерности потока воздуха на входе в КВД при открытых заслонках

Изобретение относится к центробежным компрессорам в целом и в особенности к конструкции диффузора для центробежного компрессора

Изобретение относится к области компрессоростроения, в частности к системам защиты от помпажа турбокомпрессоров, и может быть использовано в различных отраслях промышленности

Изобретение относится к способам и устройствам для предотвращения помпажа и срыва потока в турбокомпрессорах при помощи наборов координат, инвариантных по отношению к условиям на всасывании

Изобретение относится к компрессоростроению и, в частности к осевым, диагональным и осецентробежным компрессорам газотурбинных установок

Изобретение относится к компрессоростроению, в частности к осевым, диагональным и осецентробежным компрессорам газотурбинных установок

Изобретение относится к области защиты осевых и центробежных компрессоров от помпажа и может быть использовано в системах защиты и управления газоперекачивающих агрегатов

Изобретение относится к надроторным устройствам с рециркулирующим потоком текучей среды в ступенях осевых турбомашин
Наверх