Способ приготовления материала для радиационной защиты

 

Сущность изобретения: способ приготовления материала для радиационной защиты включает смешивание жидкого стекла и наполнителя, прессование полученной смеси под удельным давлением 200-300 кг/см2, термообработку при температуре 700-750oС в течение 50-60 мин и отжиг в течение 7-8 ч. При этом в качестве неорганического связующего применяют жидкое стекло с силикатным модулем 1,7-2,1, а в качестве наполнителя используют тонкодисперсный железосодержащий гематитовый концентрат с размером частиц 40-50 мкм. Преимуществами изобретения являются: улучшение физико-механических характеристик материала, повышение радиационной защиты и стойкости материала, а также долговечность его использования. 3 табл.

Изобретение относится к области биологической защиты от ионизирующего излучения, а именно к способам приготовления композиционных материалов, используемых в атомной, радиохимической промышленности и военно-морском флоте.

Известен способ приготовления тяжелого бетона, заключающийся в смешении цемента, обычного песка, гематита и воды (см. Бродер Д.Л. и др. Бетон в защите ядерных установок, М.: АТОМИЗДАТ, 1973, с. 21).

Недостатком известного способа является то, что при использовании указанных заполнителей при изготовлении бетона в нем не сохраняется одна и та же плотность. Кроме того, материал не обладает оптимальным зерновым составом, от которого зависят удобоукладываемость и защитные свойства материала.

Наиболее близким, принятым за прототип, является способ приготовления композиции для защиты от радиации, изложенный в патенте RU 2105363, опубл. 20.02.1998, кл. G 21 F 1/02. В известном способе в барабан лопастной мешалки последовательно загружают расчетное количество жидкого стекла, добавок, молотых отходов оптического стекла и феррохромового шлака. Общее время перемешивания составляет 10-15 мин.

Недостатком известного способа является то, что получаемый продукт не обладает высокими защитными характеристиками, а также не обладает высокой радиационной стойкостью и не может быть использован для долгосрочной защиты.

Техническим результатом заявленного изобретение является улучшение физико-механических характеристик материала, повышение радиационной защиты и стойкости материала, а также долговечность его использования.

Указанный технический результат достигается за счет того, что в заявленном способе приготовления материала для радиационной защиты производят смешивание жидкого стекла и наполнителя, при этом в качестве неорганического связующего применяют жидкое стекло с силикатным модулем 1,7-2,1, а в качестве наполнителя используют тонкодисперсный железосодержащий гематитовый концентрат с размером частиц 40-50 мкм. Далее, производят прессование материала под удельным давлением 200-300 кг/см2, термообработку при температуре 700-750oС в течение 50-60 мин и отжиг в течение 7-8 ч при следующем соотношении компонентов, мас.%: Жидкое стекло - 5 - 17 Гематитовый концентрат - 83 - 95 В качестве железосодержащего сырья используют высокодисперсный гематитовый концентрат Яковлевского месторождения КМА с насыпной плотностью 2000 кг/м3 фракции 40-50 мкм, имеющий следующий химический состав (табл. 1).

Использование данного железосодержащего концентрата в качестве наполнителя при производстве неорганического материала для радиационной защиты обусловлено высоким содержанием железа. Кроме того, невысокое содержание оксида железа (FeO) до 2%, свидетельствует о высокой степени окисления кварцитов (Fе2О3) до 96%, что относит их к самому высокому классу химической и радиационной стойкости материалов.

Использование жидкого стекла в качестве связующего при изготовлении неорганического материала для радиационной защиты обусловлено свойством жидкого стекла образовывать при термообработке и последующем отжиге стеклокристаллический монолит. Это свойство позволяет получить материал высокой плотности (2800-3300 кг/м3), обладающий высокими физико-механическими характеристиками, значительной термической устойчивостью и водоустойчивостью. Отсутствие водной фазы в материале приводит к получению высокой радиационной стойкости.

При этом следует учитывать то, что при содержании жидкого стекла менее 5 мас. % происходит ухудшение радиационно-защитных свойств и физико-механических показателей. Превышение содержания жидкого стекла в материале свыше 17 мас.% приводит к растрескиванию материала при термообработке и ухудшению радиационной стойкости. Кроме того, это содержание не позволяет прессовать материал, что снижает его радиационно-защитные и физико-механические характеристики.

Количественное содержание компонентов предлагаемого и известного материалов в табл. 2.

Пример. 85 г железосодержащего гематитового концентрата дисперсностью 50 мкм тщательно перемешивают с 15 г жидкого стекла с силикатным модулем, равным 2,0. Полученную смесь закладывают в пресс-форму 5х5х5 см и прессуют методом холодного прессования под удельным давлением 250 кг/см2. Полученный материал подвергают термообработке в муфельной печи до температуры 750oС, выдерживают в течение 50 мин и отжигают в течение 7 ч до полного его остывания. Полученный образец обладает следующими характеристиками: плотность 3000 кг/м3, прочность на сжатие 650 кг/см, линейный коэффициент ослабления ионизирующего излучения (источник Рm147 с энергией Е 120 кэВ) - 3,05, линейный коэффициент ослабления ионизирующего излучения (источник Cs137 с энергией Е 661 кэВ) - 0,252, радиационной стойкостью 2 балла.

Результаты радиационно-защитных и физико-механических испытаний представлены в табл. 3.

Измерение радиационно-защитных свойств материалов осуществлялось гамма-спектральным методом на базе многоканального анализатора с программным обеспечением "Прогресс" в аккредитованной в Госстандарте РФ лаборатории радиационного контроля "Спектр" (аттестат аккредитации 41143-96). Оценка физико-механических характеристик проводилась в государственном научном центре по сертификации строительных материалов и конструкций, аккредитованном в Госстандарте РФ "БелГТАСМ-сертификация".

Анализ данных, приведенных в табл. 3, показывает, что предлагаемый способ позволяет получить строительный материал для защиты от радиоактивного воздействия, обладающего высокими радиационно-защитными и физико-механическими характеристиками.

Формула изобретения

Способ приготовления материала для радиационной защиты, состоящий из смешения жидкого стекла и наполнителя, отличающийся тем, что в качестве неорганического связующего применяют жидкое стекло с силикатным модулем 1,7-2,1, а в качестве наполнителя используют тонкодисперсный железосодержащий гематитовый концентрат с размером частиц 40-50 мкм, производят прессование материала под удельным давлением 200-300 кг/см2, термообработку при температуре 700-750oС в течение 50-60 мин и отжиг в течение 7-8 ч, при следующем соотношении компонентов, мас. %: Жидкое стекло - 5-17 Гематитовый концентрат - 83-95

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области биологической защиты от ионизирующего излучения, а именно к способам приготовления композиционных материалов, используемых в атомной, радиохимической промышленности и военно-морском флоте

Изобретение относится к строительным материалам, изготовленным на основе глетглицеринового цемента, и может быть использовано для изготовления строительных деталей и изделий, предназначенных для защиты от ионизирующих излучений
Изобретение относится к строительству, в частности к технологиям изготовления радиационно-защитного бетона, применяемого для изготовления металлобетонных контейнеров, предназначенных для хранения и/или транспортировки радиоактивных материалов

Изобретение относится к атомной и медицинской промышленности, в частности, для изготовления радиационно-защитных камней, стен, перегородок и штукатурных растворов, предназначенных для биологической защиты персонала от источников рентгеновского и гамма-излучений
Изобретение относится к строительным материалам, в частности к составам бетонных смесей и наполнителей, применяемым для защиты от радиационного излучения, особенно на атомных станциях, на предприятиях по выработке и переработке изотопов, на спецкомбинатах по переработке и захоронению радиоактивных отходов и на других ядерных объектах

Изобретение относится к атомной энергетике и промышленности и может быть использовано при консервации на длительный период выведенных главным образом в результате аварии, объектов, на которых в результате аварии произошли разрушения защитных оболочек и/или других защитных барьеров делящихся ядерных материалов и выход радиоактивных веществ в производственные помещения и окружающую среду

Изобретение относится к строительным материалам, в частности к сырьевой смеси для приготовления особопрочного и тяжелого бетона, преимущественно для контейнера для транспортировки или хранения отработавшего ядерного топлива (ОЯТ)

Изобретение относится к ядерной технике и может быть использовано при устройстве радиационнозащитных экранов в регионах радиоактивного загрязнения почвы, в сооружениях для захоронения радиоактивных отходов, строительстве объектов, снижающих естественный радиационный фон и в защитных экранах рентгеновского и смешанных излучений

Изобретение относится к строительным материалам, предназначенным для защиты от ионизирующих излучений

Изобретение относится к строительным материалам, предназначенным для защиты от ионизирующих излучений

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления строительных изделий, предназначенных для защиты от ионизирующих излучений

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий на основе гипсовых связующих, предназначенных для защиты от ионизирующих излучений

Изобретение относится к защите от ионизирующего излучения, в частности для радиационной безопасности обслуживающего персонала и окружающей среды

Изобретение относится к материаловедению, в частности, к сырьевым смесям для приготовления радиационно-защитного, особопрочного и тяжелого бетона преимущественно для контейнера для транспортировки или хранения отработавшего ядерного топлива (ОЯТ)

Изобретение относится к составам радиационно-защитных бетонов, применяемых при возведении сооружений, предназначенных для защиты от радиоактивного воздействия ядерных установок, атомных электростанций, предприятий по выработке изотопов и других специальных сооружений, в которых используются источники радиоактивного излучения

Изобретение относится к составам серных вяжущих и может быть использовано для изготовления серного бетона, предназначенного для защиты от радиации, а также для заливки швов футеровки, аппаратуры и строительных конструкций, эксплуатирующихся в условиях воздействия ионизирующих излучений

Изобретение относится к составам серных вяжущих и может быть использовано для изготовления серного бетона, предназначенного для защиты от радиации, а также для заливки швов футеровки, аппаратуры и строительных конструкций, эксплуатирующихся в условиях воздействия ионизирующих излучений
Изобретение относится к составам серных вяжущих и может быть использовано для изготовления серного бетона, предназначенного для защиты от нейтронного излучения, а также для заливки швов футеровки, аппаратуры и строительных конструкций, эксплуатирующихся в условиях воздействия ионизирующих излучений
Наверх