Способ концентрации и аккумуляции электромагнитной энергии в плазме среды

Авторы патента:

H05H1/02 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

 

Использование: для создания плазмы в среде и концентрации, и аккумуляции электромагнитной энергии в ней, для хранения и отдачи энергии потребителю. Сущность изобретения: навстречу друг другу через газообразную сферу пропускают электромагнитное излучение от инфракрасного и рентгеновского источников. Концентрация и аккумуляция энергии регулируется электромагнитным излучением и катушками, расположенными вдоль электромагнитного потока. Снятие электрической энергии производят через катушки, расположенные между излучателями. Технический результат заключается в увеличении концентрации энергии в плазме, возможности хранения энергии, ее отвода и использования. 1 ил.

Изобретение относятся к плазменной энергетике. Известны различные способы накопления электромагнитной энергии /1/. МГД-генераторы. "Токамак", "СФЕРОМАК". Эти способы обладают низким КПД, не могут использоваться как аккумуляторы, требуется внешнее магнитное поле.

Известен способ отопления электромагнитной энергии в шаровой плазме /2/. Этот способ обладает низким КПД с большим расходом энергии, создание внешних магнитных полей, использования лазерного луча - это дорогостоящее и энергетически сложное устройство.

Зaдaчей предлагаемого изобретения является увеличение концентрации энергии в плазме с последующим ее хранением, отводом и использованием, а также снятие требований по дорогостоящим и энергетически сложным устройствам.

Это достигается тем, что навстречу друг другу пропускают электромагнитное излучение от инфракрасного и рентгеновского источника и катушки, расположенные вдоль электромагнитного потока, обеспечивая концентрацию, хранение, отвод и использование электромагнитной энергии.

Сопоставляемый анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного тем, что навстречу друг другу создается электромагнитное излучение от инфракрасного и рентгеновского лоточника через катушки.

Таким образом на среду оказывает воздействие электромагнитное излучение от инфракрасного и рентгеновского источника.

В результате ионизации газа образуются индукционные токи ионной и электронной компоненты, которые в свою очередь образуют в газовой среде два азимутальных поля тороидальной формы и два осевых поля конической формы с ужением к центру между излучателями, а при полной ионизации среды газовый заряд растет, сжимаясь к центру, определяя сфероидальную форму, аккумулятор заряжен полностью. Снятие энергии производят через катушки, расположенными между излучателями.

Для осуществления способа создания в среде плазмы и концентрации с аккумуляцией в ней электромагнитной энергии используют устройство, содержащее камеру, в которой по противоположным сторонам расположены электромагнитные излучатели от инфракрасных и рентгеновских источников, причем рентгеновские излучатели находятся в центрах инфракрасных излучателей и обращены излучающими поверхностями навстречу друг другу. Камера заполнена различным газом /воздухом, H2, O2 и т.д./ под различным давлением /больше или меньше атмосферного давления или равно/. В средней части камеры расположены катушки вдоль оси между излучателями, связанные между собой различным соединением /последовательным, параллельным, смешанным и другим/, а также связанные проводами с энергоприемной системой.

Под действием инфракрасного и рентгеновского излучения происходит ослабление и разрушение молекулярных связей, обеспечивается ионизация данной среды, приводя в движение газы за счет неравномерной ионизации среды. Под действием комплексного излучения в среде возникает тепловая волна, затем ударная волна, обеспечивая ударную ионизации газа. Идет процесс ионизации газовой среды, разделяя низкотемпературную плазму на ионную и электронную композиции, ионов на оси, электронов на периферии от оси. С разделением зарядов возникает ударная волна плазмы, которая определена электростатическими колебаниями, определяя условия самофокусировки теплового излучения плазмы. Распространение угарной волны определяет образование флуктуаций плотностей как электронной, так и ионной составляющей плазмы. От периферии на оси образуются токовые вихри электронной компоненты плазмы и скапливаются на определенном расстоянии. За счет флуктуации плотностей в ионной компоненте образуются индукционные токи, как бы навинчиваясь на ось. Индукционные токи электронной компоненты определяют образование сфероидальных полей тороидальной конфигурации. Индукционные токи электронной компоненты определяют образование полей конической конфигурации. Возникновение индукционных токов ионной составляющей определяет появление осевых полей магнитной индукции, а индукционные токи определяют поверхность конуса.

Быстрая перестройка магнитного поля электронной компоненты определена процессами самосжатия плазменного разряда, а при прохождении ударной волны в газе "Спин-эффект" и поддерживается токами индукции ионной составляющей за счет амбиполярной диффузии заряженных частиц при взрывной неустойчивости.

Токовая ионизационная турбулентность определена замкнутыми индукционными витками индукционных токов ионной компоненты и замкнутыми индукционными токами электронной компоненты, образующих в газовой среде два осевых поля конической конфигурации и два азимутальных поля тороидальной формы. Движение двух индукционных токов ионной компоненты имеют одно направление и они стягивается к центру. Движение двух индукционных токов электронной компоненты тоже имеет одно направление, и токи в них стягиваются. Слияние двух тороидальных конфигураций исключено за счет того, что они имеют на поверхности одинаковые по знаку заряды. Газовый разряд в газе, сжимаясь к центру, растет и при полной ионизации определяет сфероидальную форму. Аккумулятор заряжен. Аккумулятор может выдавать энергию в любом диапазоне. Высокая скорость развития их нестабильностей затрудняет токосъем с устройства на потребителя. Но управлять этими процессами можно за счет катушек, расположенных вдоль оси, так как электропроводность плазмы возле оси ниже, чем в торе, и магнитные поля быстрее проникают в тор. При получении постоянного тока или тока с другой частотой необходимо катушки соединять последовательно или параллельно, либо другим способом и переключить на потребителя. Индукционный ток в одном из витков катушки вызовет ток в другом, а тот в свою очередь, изменяя число силовых линий магнитной индукции совместно с силовыми линиями с ионной составляющей, сожмет этот тор за счет возрастания тока на конусе мгновенно за счет согласования со вторым. Первый тор расширится, увеличивая индукционный ток в первой катушке, во второй сжимающийся тор еще уменьшит электропроводность плазмы. Такая раскачка будет осуществляться до потребного напряжения потребителя. Такой колебательный процесс поддерживается силами магнитной упругости. Отдача тока на потребитель будет осуществляться до тех пор, пока разряд не вытянется на оси.

Источники информации 1. А.с. 1736016, кл.5 Н 05 Н 7/04. Устройство для накопления электромагнитной энергии и генерации импульсных токов.

2. РСТ N 191/00166 от 28.05.91, кл. Н 05 Н 1/00, 1/02, 1/24 N 92/22189 от 10.12.92. Метод генерации и эксплуатации шаровой плазмы и подобных явлений в камере.

Формула изобретения

Способ концентрации и аккумулирования электромагнитной энергии в плазме среды, включающий свободное прохождение электромагнитного излучения через нее, отличающийся тем, что навстречу друг другу пропускают электромагнитное излучение от инфракрасного и рентгеновского источников, причем концентрация и аккумуляция электромагнитной энергии регулируется электромагнитным излучением и катушками, расположенными вдоль электромагнитного потока.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технике индуктивных накопителей энергии с плазменными размыкателями тока (ПРТ) и может быть использовано при создании импульсных источников питания для сильноточных ускорителей заряженных частиц, плазменных диодов, излучающих систем и т.п

Изобретение относится к электронно-лучевой технике, а именно к устройствам для вывода интенсивных пучков частиц из вакуума в газовую сферу высокого давления

Изобретение относится к электронно-лучевой и плазменной технике и может использоваться в технологиях обработки материалов выведенными из вакуума в газ сфокусированными электронными пучками

Изобретение относится к области космической техники и может использоваться в электрореактивных двигательных установках, в стационарных плазменных двигателях и двигателях с анодным слоем, а также в области прикладного применения плазменных ускорителей

Изобретение относится к области ускорительной техники и может быть использовано для формирования высокоэнергетичных пучков многозарядных ионов различных элементов в установках для ионной имплантации, а также в качестве инжекторов ускорителей тяжелых ионов

Изобретение относится к области космической техники и может быть использовано в электрореактивных двигательных установках в качестве стационарных плазменных двигателей и двигателей с анодным слоем

Изобретение относится к области космической техники и может быть использовано в электрореактивных двигательных установках, в качестве стационарных плазменных двигателей и двигателей с анодным слоем

Изобретение относится к устройствам барьерного разряда в кислородосодержащей среде или воздухе и может быть использовано в промышленном производстве озонаторов

Изобретение относится к высоковольтной импульсной технике и может быть использовано при создании мощных импульсных источников питания для сильноточных ускорителей заряженных частиц, плазменных диодов, излучающих пинчевых систем и т.п

Изобретение относится к плазменной технике, а более конкретно к устройствам, предназначенным для получения интенсивных пучков ионов, которые могут использоваться в ионно-лучевых технологиях

Изобретение относится к способам получения электрической энергии

Изобретение относится к плазменной технике, предназначенной для аккумуляции энергии в среде плазмы с последующим ее отводом и использованием

Изобретение относится к способу и конструкции устройства, предназначенного для получения электроэнергии

Изобретение относится к области производства энергии, в частности тепловой, которая выделяется из электропроводящего материала как энергия, эквивалентная энергии связи атомов в проводнике, при термоэлектронном взрыве последнего

Изобретение относится к электротехнике и может быть использовано для получения электрической энергии путем преобразования тепловой энергии плазмы в электрическую

Изобретение относится к электрогазо(гидро)динамическим преобразователям энергии и предназначено для применения в электроэнергетике, в холодильной и криогенной технике для получения электрической энергии с одновременным охлаждением рабочего тела

Изобретение относится к плазменной технике, предназначенной для аккумуляции энергии в среде плазмы с последующим ее отводом и использованием

Изобретение относится к электротехнике и может быть использовано для получения электрической энергии путем преобразования тепловой энергии плазмы в электрическую

Изобретение относится к электрогидродинамическим преобразователям энергии и может быть использовано для перекачивания диэлектрических жидкостей, сжатых газов или смесей газов с дисперсными жидкими или твердыми частицами в криогенной технике, энергетической, химической и газовой промышленности, а также в других отраслях народного хозяйства
Наверх