Способ получения рентгеновского изображения

 

Изобретение относится к радиационной технике, а именно к рентгеноскопии, рентгенодиагностике. В способе время облучения и регистрации оптического изображения меньше или равно излучательному времени рентгенолюминесцентного преобразователя, а начало экспозиции фотоэлектронного устройства синхронизуют по времени в интервале импульса излучения рентгенолюминесцентного преобразователя. Для регистрации оптического изображения используют импульсный фотоэлектронный матричный аналого-цифровой прибор с зарядовой связью (ПЗС матрица), время экспозиции которого равно или меньше излучательного времени рентгенолюминесцентного преобразователя. Для уменьшения времени регистрации оптического сигнала используют сочлененный с импульсной ПЗС матрицей импульсный управляемый электронно-оптический преобразователь, время экспозиции которого равно или меньше излучательного времени рентгенолюминесцентного преобразователя. Техническим результатом изобретения является снижение лучевого воздействия на объект, увеличение чувствительности и качества изображения исследуемого предмета. 2 з.п.ф-лы, 1 ил.

Изобретение относится к области радиационной техники, а именно к рентгеноскопии, рентгенодиагностике, и может быть использовано при неразрушающем контроле различных материалов, изделий и объектов с помощью импульсных рентгеновских лучей, а также для медицинской рентгенодиагностики.

Известен способ [1] регистрации рентгеновского излучения, прошедшего через исследуемый объект с помощью системы ТВ-РЭОП (телевизионная камера - рентгеновский электронно-оптический преобразователь), в которой мишень введена внутрь вакуумного объема.

Недостатком этого способа является то, что при фотографировании изображения с монитора радиационные шумы ограничивают снижение рентгеновской дозы на объект в пределах 100 мкР на один снимок. Радиационные шумы - это радиационный фон, включающий излучение земли и космическое излучение в рентгеновском диапазоне.

Наиболее близким техническим решением к заявляемому является способ [2] получения рентгеновского изображения, включающий облучение импульсным рентгеновским излучением стоящего за исследуемым предметом конвертера, преобразующего рентгеновское излучение в видимое, съемку полученного изображения видеокамерой, преобразование сигнала из аналоговой формы в цифровую, запоминание, обработку и передачу изображения.

Недостатком данного способа является то, что формирование и регистрация изображения осуществляется при облучении пакетом рентгеновских импульсов. Синхронизацию видеокамеры осуществляют только по первому импульсу пакета рентгеновских импульсов. Пакет состоит из 4-10 импульсов. При этом видеокамера регистрирует не только полезный сигнал на рентгенооптическом трансформаторе в момент прихода рентгеновских импульсов, а также радиационные и собственные шумы. Это в свою очередь сильно снижает соотношение сигнал-шум. Например, стандартный ZnS-CdS-Ag рентгенолюминесцентный экран имеет излучательное время 1 мкс. Пакет рентгеновских импульсов состоит из 4-10 наносекундных импульсов (длительность одного импульса 15 нс), которые следуют с частотой ~ 5 кГц. Это означает, что интервал времени между наносекундными рентгеновскими импульсами ~ 200 мкс. Когда такой пакет приходит на рентгенолюминесцентный экран, то на экране возникает световое поле с частотой следования 5кГц. Длительность оптических вспышек, отвечающих за изображение (полезный сигнал), соответствует 1 мкс, а интервал между полезными вспышками 200 мкс. Следовательно, между вспышками, в течение 200 мкс, экран и камера фиксирует радиационные шумы. В этот же временной интервал 200 мкс камера создает и собственные шумы. Таким образом, указанные особенности работы значительно снижают соотношение сигнал-шум системы, состоящей из рентгенолюминесцентного экрана, видеокамеры и аналого-цифрового преобразователя. А это ведет к получению нечеткого изображения исследуемого объекта и значительной дозе облучения.

Целями изобретения являются снижение лучевого воздействия на объект, увеличения чувствительности и качества изображения исследуемого предмета.

Поставленная цель достигается тем, что заявляемый способ включает просвечивание объекта импульсным рентгеновским излучением, преобразование прошедшего объект излучения рентгенолюминесцентным преобразователем, регистрацию оптического изображения фотоэлектронным устройством, синхронизованным с рентгеновским источником, преобразование сигналов из аналоговой формы в цифровую, запоминание, обработку и трансляцию изображения. При этом время облучения и регистрации оптического изображения меньше или равно излучательному времени рентгенолюминесцентного преобразователя, а начало экспозиции фотоэлектронного устройства синхронизуют по времени в интервале импульса излучения рентгенолюминесцентного преобразователя. Для регистрации оптического изображения используют импульсный фотоэлектронный матричный аналого-цифровой прибор с зарядовой связью (ПЗС матрица), время экспозиции которого равно или меньше излучательного времени рентгенолюминесцентного преобразователя. Для уменьшения времени регистрации оптического сигнала используют сочлененный с импульсной ПЗС матрицей импульсный управляемый электронно-оптический преобразователь (ЭОП), время экспозиции которого равно или меньше излучательного времени рентгенолюминесцентного преобразователя. Сопоставительный анализ с прототипом позволяет сделать вывод о соответствии технического решения критерию "новизна".

Заявителю неизвестно из уровня техники о наличии следующих признаков: 1) время облучения и регистрации оптического изображения меньше или равно излучательному времени рентгенолюминесцентного преобразователя, 2) начало экспозиции фотоэлектронного устройства синхронизуют в интервале импульса излучения рентгенолюминесцентного преобразователя.

Таким образом, заявляемое техническое решение соответствует критерию "изобретательский уровень".

На чертеже представлена структурная схема устройства для реализации данного способа.

Способ осуществляется следующим образом: Контролируемый объект (2) просвечивают импульсом рентгеновского источника (1). Стоящий за объектом (2) рентгенолюминесцентный преобразователь (3) преобразует рентгеновское изображение в оптическое, которое через фотоэлектронное устройство (4), систему преобразования сигналов из аналоговой формы в цифровую, запоминания, обработки и контроля (5) транслируется на монитор, принтер или экран (6). При этом начало экспозиции фотоэлектронного устройства (4) синхронизуют по времени в интервале импульса излучения рентгенолюминесцентного преобразователя (3). В качестве фотоэлектронного устройства используется импульсный с управляемой экспозицией матричный аналого-цифровой прибор с зарядовой связью (ПЗС матрица). При использовании в качестве фотоэлектронного устройства с экспозицией меньше 1 мкс на вход ПЗС матрицы устанавливается ЭОП, синхронизованный с ПЗС матрицей и источником рентгеновского излучения (1). ЭОП позволяет уменьшить время регистрации и повышает чувствительность.

Пример 1. Контролируемый объект облучают рентгеновским импульсом длительностью 10 нс (энергия квантов 120 кэВ). Преобразование рентгеновского излучения в оптическое производят с помощью рентгенолюминесцентного преобразователя на основе ZnS-Cds-Ag, у которого полное излучательное время примерно 3 мкс, а ПЗС матрица имеет экспозицию 1 мкс, что меньше полного излучательного времени рентгенолюминесцентного преобразователя. Регистрация оптического изображения синхронизована по времени с рентгеновским источником так, что начало экспозиции изображения ПЗС матрицей совпадает с началом импульса излучения рентгенолюминесцентного преобразователя. Отсюда следует, что ПЗС матрица регистрирует практически только полезный сигнал рентгенолюминесцентного преобразователя и не регистрирует радиационный фон и внешние оптические шумы. В прямых измерениях при получении изображения объект облучался рентгеновским импульсом длительностью (t) 10 нс и мощностью (Р) 104 Р/с. В этом случае по сравнению с прототипом снижена доза облучения (D) в 20 раз (D=Pt= 104 Р/с10-8с=10-4 P, 1 P 1 рад). При этом соотношение сигнал - шум увеличилось в 200 раз, что существенно повысило качество изображения.

Пример 2. Контролируемый объект облучают рентгеновским импульсом длительностью 10 нc. Преобразование рентгеновского излучения в оптическое производят с помощью рентгенолюминесцентного преобразователя на основе NaI-Tl, у которого полное излучательное время примерно 650 нc. Поскольку к настоящему времени не существует ПЗС матрицы с экспозицией меньше 1 мкс, то дополнительно на вход ПЗС матрицы, работающей с минимальной экспозицией 1 мкс, подключен управляемый электронно-оптический преобразователь (ЭОП) с экспозицией 100 нc. Работа ЭОПа синхронизована с рентгеновским источником и ПЗС матрицей так, что начало экспозиции изображения ПЗС матрицей происходит спустя 50 нc от начала импульса излучения рентгенолюминесцентного преобразователя. В этом случае радиационная доза облучения такая же, что и в примере 1. ПЗС матрица регистрирует полезный сигнал рентгенолюминесцентного преобразователя в течение 100 нс, поэтому соотношение сигнал - шум еще больше повышается и по сравнению с прототипом увеличивается в 2000 раз. ЭОП обладает значительным усилением оптического изображения (от 100 до 20000 раз). Это позволило увеличить чувствительность регистрирующей системы без потери качества изображения в 2000. Отсюда, как показали испытания, при энергии рентгеновских квантов 250 кэВ увеличилась предельная толщина контролируемых стальных деталей с 4 до 10 см.

Пример 3. Контролируемый объект облучают рентгеновским импульсом длительностью 1 нc. Преобразование рентгеновского излучения в оптическое производят с помощью рентгенолюминесцентного преобразователя на основе композиционного состава из Се+3: Y2SiO5 и CsI, у которого полное излучательное время примерно 40 нc. В этом случае также дополнительно на вход ПЗС матрицы, работающей с минимальной экспозицией 1 мкс, подключен управляемый ЭОП с экспозицией 10 нc. Работа электронно-оптического преобразователя синхронизована с рентгеновским источником и ПЗС матрицей так, что начало экспозиции изображения ПЗС матрицей происходит спустя 8 нc от начала импульса излучения рентгенолюминесцентного преобразователя. Следовательно, ПЗС матрица регистрирует полезный сигнал рентгенолюминесцентного преобразователя в течение 10 нc. В этой серии испытаний мощность радиационной дозы Р=104 Р/с, радиационная доза значительно уменьшена (по сравнению с прототипом в 200 раз, D=Рt=104 Р/с10-9с=10-5 Р) соотношение сигнал - шум еще более увеличено (по сравнению с прототипом в 20000 раз). При этом чувствительность системы по сравнению с примером 2 увеличилась еще в 10 раз и достигла предельной величины по усилению оптического изображения ЭОПа (20000 раз). Отсюда, как показали испытания, без увеличения энергии рентгеновских квантов (250 кэВ) увеличилась предельная толщина контролируемых стальных деталей с 10 до 16 см.

Пример 4. Контролируемый объект облучают рентгеновским импульсом длительностью 1 нc. Преобразование рентгеновского излучения в оптическое производят с помощью рентгенолюминесцентного преобразователя на основе ZnO, у которого полное излучательное время около 2 нc. В этом случае также дополнительно на вход ПЗС матрицы, работающей с минимальной экспозицией 1 мкс, подключен управляемый ЭОП с экспозицией 2 нc. Работа электронно-оптического преобразователя синхронизована с рентгеновским источником и ПЗС матрицей так, что начало экспозиции изображения ПЗС матрицей происходит спустя 1,5 нc от начала импульса излучения рентгенолюминесцентного преобразователя. В этом случае радиационная доза облучения такая же, что и в примере 3. ПЭС матрица регистрирует полезный сигнал рентгенолюминесцентного преобразователя в течение 2 нc, соотношение сигнал - шум еще более увеличено (по сравнению с прототипом в 100000 раз). Благодаря этому возросло качество изображения. При этом чувствительность системы такая же, что и в примере 3.

Источники информации 1. Зайдель И.Н., Леонова Н.И., Гурвич В.А., Куклев С.В. Успехи в разработке и исследовании медицинских рентгеновских электронно-оптических преобразователей // В сб. Люминесцентные приемники и преобразователи ионизирующего излучения, Новосибирск: Наука, 1985. С.94-98.

2. Патент РФ 2153848, А 61 В 6/00, Н 05 G 1/20. Опубликован 10.08.2000 г. (прототип).

Формула изобретения

1. Способ получения рентгеновского изображения, включающий просвечивание объекта импульсным рентгеновским излучением, преобразование прошедшего объект излучения рентгенолюминесцентньм преобразователем, регистрацию оптического изображения фотоэлектронным устройством, синхронизованным с рентгеновским источником, преобразование сигналов из аналоговой формы в цифровую, запоминание, обработку и трансляцию изображения, отличающийся тем, что время облучения и регистрации оптического изображения меньше или равно излучательному времени рентгенолюминесцентного преобразователя, а начало экспозиции фотоэлектронного устройства синхронизуют по времени в интервале импульса излучения рентгенолюминесцентного преобразователя.

2. Способ по п. 1, отличающийся тем, что для регистрации оптического изображения используют импульсный фотоэлектронный матричный аналого-цифровой прибор с зарядовой связью (ПЗС матрица), время экспозиции которого равно или меньше излучательного времени рентгенолюминесцентного преобразователя.

3. Способ по п.1, отличающийся тем, что для уменьшения времени регистрации оптического сигнала используют сочленненный с импульсной ПЗС матрицей импульсный управляемый электроннооптический преобразователь, время экспозиции которого равно или меньше излучательного времени рентгенолюминесцентного преобразователя.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области рентгеновской техники

Изобретение относится к области цифровой рентгеновской техники, предназначенной для неразрушающего контроля объектов, и может быть использовано для таможенного контроля грузов и багажа, досмотра багажа авиапассажиров, для инспекции авиационных и морских контейнеров, для контроля продуктов в трубопроводах и т.п

Изобретение относится к области цифровой рентгеновской техники, предназначенной для неразрушающего контроля объектов, и может быть использовано для таможенного контроля грузов и багажа, досмотра багажа авиапассажиров, для контроля продуктов в трубопроводах и т.д

Изобретение относится к контрольно-измерительной технике, а именно к радиационным интроскопам, предназначенным для неразрушающего контроля промышленных изделий, и может быть использовано в системах рентгеновского телевизионного контроля, преимущественно с использованием высокоэнергетического тормозного радиационного излучения

Изобретение относится к радиационной томографии и может применяться для неразрушающего контроля внутреннего строения объектов

Изобретение относится к медицине, в частности к рентгенологии и анатомии

Изобретение относится к методам диагностики и неразрушающего контроля на основе рентгеновской и гамма-томографии и предназначено для применения в авиации, космонавтике, атомной энергетике, нефтяной и газовой промышленности, машиностроении, медицине

Изобретение относится к технике рентгеновской интроскопии, а именно к неразрушающему контролю и технической диагностике материалов и изделий, и может применяться в машиностроении, авиационной промышленности, энергетике, а также технике, используемой при досмотре багажа и ручной кладки пассажиров

Изобретение относится к рентгеновской технике

Изобретение относится к медицине, а именно к рентгенодиагностике заболеваний околоносовых пазух

Изобретение относится к медицине, в частности к нефрологии, и может быть использовано для диагностики и лечения оксалатной нефропатии (ОН) у детей

Изобретение относится к проекционной микроскопии с использованием радиационных методов, более конкретно к средствам для получения увеличенной теневой проекции объекта, включая его внутреннюю структуру, с использованием рентгеновского излучения

Изобретение относится к радиографической инспекционной технике, в которой используется облучение конверсионной мишени импульсами тока ускоренных электронов, предназначено для неразрушающего контроля грузов и багажа, досмотра багажа авиапассажиров, для инспекции авиационных и морских контейнеров и т.п
Наверх