Способ напыления

 

Изобретение относится к области машиностроения и может быть использовано для нанесения газотермических покрытий с высокими значениями адгезии и когезии. На подложку одновременно воздействуют активирующими и напыляемыми частицами. Пятна напыления активирующих и напыляемых частиц совмещают. Происходит механоактивация поверхности подложки и покрытие активирующими частицами и удаление слабосцепленных частиц покрытия. Углы напыления 40-45o. Изобретение позволяет увеличить эффективность механоактивации и повысить значения адгезии и когезии покрытия.

Изобретение относится к области машиностроения, а более конкретно к формированию защитных покрытий газотермическим напылением.

Большой круг технических аппаратов требует формирования на своей поверхности покрытий с заданным уровнем пористости и имеющих достаточно высокие значения адгезии и когезии.

Известен способ напыления, в котором процесс предварительной активации подложки частицами проводят последовательно с процессом напыления. Для уменьшения до минимума времени между этими операциями их проводят в одной камере [1], что повышает величину адгезии покрытия к подложке.

Наиболее близким способом напыления к разработанному способу напыления является способ, в котором операцию обработки поверхности подложки и покрытия активирующими частицами и процесс формирования покрытия напыляемыми частицами проводят послойно [2]. После напыления монослоя идет его обработка активирующими частицами. Причем пятна для активирующих и напыляемых частиц, которые ограничивают области их расположения на подложке, граничат друг с другом. Угол соударения активирующих и напыляемых частиц с подложкой близок к 90o. Этот способ напыления является прототипом к разработанному способу напыления. Обработка активирующими частицами монослоев покрытия в процессе напыления позволяет повышать величину когезии монослоя покрытия за счет механической активации его поверхности и уплотнения монослоя.

В то же время в способе, описанном в прототипе, есть и недостатки. Пятна, в пределах которых активирующие и напыляемые частицы падают на покрытие, не совмещены друг с другом. В результате обработка покрытия производится только после напыления очередного монослоя покрытия, его поверхностного слоя. В результате слабосцепленные частицы внутри напыленного монослоя не сбиваются активирующими частицами. Более того, при углах обработки примерно 90o остроугольными активирующими частицами количество осколков от этих частиц в подложке и в покрытии максимально.

Разработан новый способ напыления, в котором устранены недостатки, присущие способам напыления, описанным в аналоге и прототипе. С целью получения пористых покрытий с высокими значениями адгезии и когезии механическая активация подложки и покрытия ведется одновременно с процессом напыления. Для этого пятна от активирующих и напыляемых на поверхности подложки совмещают и оба процесса ведут при углах соударения частиц с подложкой, равных (40-45)o.

Совмещение пятен позволяет с большой эффективностью сбивать слабосцепленные частицы покрытия активирующими частицами. Поскольку пятна активирующих и напыляемых частиц совмещены, то удаление слабосцепленных частиц происходит и внутри напыляемого монослоя, а следовательно, по всему сечению покрытия. Удаление из покрытия слабосцепленных частиц активирующими частицами под углами 40-45o более эффективно по сравнению с обработкой при углах 90o из-за наличия сдвигающей компоненты при острых углах, в то время как при нормальных углах существует только уплотняющая компонента воздействия.

Совмещение пятен напыления для активирующих и напыляемых частиц существенно увеличивает эффективность механической активации поверхности подложки и формируемого покрытия вследствие уменьшения до минимума времени между механической активацией и осаждением напыляемых частиц, формирующих покрытие.

Соударение активирующих частиц с подложкой (покрытием) под острым углом (40-45)o в 2 раза уменьшает содержание осколочных частиц, отстающих от соударения активирующих частиц остроугольной формы, что увеличивает адгезию и когезию покрытия.

Примеры использования разработанного способа напыления.

1. Плазменное напыление порошка диоксида циркония (ток дуги плазмотрона 600 А, напряжение на дуге плазмотрона 70 В). Порошок карбида кремния подается на подложку через дополнительное сопло. Пятно напыления диоксида циркония, формирующего покрытие, на подложке совмещают с пятном соударения активирующих частиц карбида кремния. Угол наклона осей конусов диоксида циркония и карбида кремния равен 45o. При таких режимах напыления формируется покрытие с пористостью 18-20% и адгезией 4,0 кГ/мм2.

2. Плазменное напыление порошка диоксида циркония (ток дуги плазмотрона 600 А, напряжение на дуге плазмотрона 70 В). Порошок карбида кремния подается на подложку через дополнительное сопло. Пятно напыления диоксида циркония, формирующего покрытие, на подложке совмещают с пятном соударения частиц карбида кремния. Угол наклона осей конусов диоксида циркония и карбида кремния равен 40o. При таких режимах напыления формируется покрытие с пористостью 20-25% и адгезией 3,5 кГ/мм2.

Литература 1. Метод газотермического напыления при пониженном давлении: заявка 3013555 Япония, МКИ5 С 23 С 4/02, С 23 С 4/12 /Канэко Томоеси, Хисада Хидео; К. к Комацу сэйсакусе. - 64 - 146984; Заявл. 09.06.89; Опубл. 22.01.91 //Кокай токке кохо. Сер 3(4). - 1991. - 4.- С.323-325. - Яп.

2. Hans-Dieter Steffens, Waltraut Brandl, Rainer Podleschny. Unfersuchungen zum EinfluB des Kugelstrahlens auf das Korrosionsverhalten von flamm- und lichfbogengespritzten Chrom-Nickel-Stahlschichten. Schweifien und Schneiden. 1991, v.43, N6, p.336-340.

Формула изобретения

Способ напыления покрытия, включающий газотермическое напыление порошка на поверхность подложки и механическую активацию формируемого покрытия активирующими частицами, отличающийся тем, что механическую активацию и напыление проводят одновременно, для чего пятна напыления порошка и активирующих частиц на подложке совмещают при угле наклона осей конусов напыления к подложке, равном 40-45.



 

Похожие патенты:

Изобретение относится к конструкции электродуговых плазмотронов с межэлектродными вставками (МЭВ), предназначенных для нанесения покрытий или плазменной закалки в труднодоступных местах, например для нанесения защитных покрытий на внутренние поверхности труб, диаметр которых в свету соизмерим с дистанциями, принятыми для напыления (100-300 мм)

Изобретение относится к металлургии, в частности к способу упрочнения, и может быть использовано для улучшения эксплуатационных свойств поверхностей изделий из металлов и их сплавов в транспортном и других отраслях промышленности

Изобретение относится к газотермическим технологиям и может быть использовано в узлах трения различных конструкций

Изобретение относится к области техники нанесения напылением разнообразных покрытий, которые могут использоваться в различных отраслях промышленности и, в частности, в области нанесения покрытий плазменным напылением при окраске различного рода строительных объектов, металлоконструкций, дорожных ограждений, нанесения разметки на дорожном полотне

Изобретение относится к технике нанесения покрытий напылением и может быть использовано в машиностроении для получения покрытий на поверхности металлических и неметаллических деталей

Изобретение относится к плазменной технологии и, в частности, к способам и устройствам для нанесения покрытий, преимущественно порошкообразных материалов, на подложку электродуговым плазмотроном и может быть использовано при упрочнении рабочих поверхностей деталей

Изобретение относится к области электротермии, конкретнее к способам вакуумно-плазменной обработки тонкостенных сложнолегированных изделий, преимущественно цилиндрической формы

Изобретение относится к технологии и средствам для газодинамического нанесения покрытий из порошковых материалов и может быть использовано в машиностроении и других отраслях промышленности для получения покрытий, придающих различные свойства обрабатываемым поверхностям

Изобретение относится к области порошковой металлургии, в частности к формированию защитных покрытий, и может найти применение при ремонте и восстановлении различных деталей

Изобретение относится к области нанесения металлического адгезионного слоя для термически напыленных керамических теплоизоляционных слоев на металлические конструкционные детали

Изобретение относится к машиностроению и может быть использовано для нанесения покрытий различного назначения на рабочие поверхности деталей
Изобретение относится к способам нанесения покрытий и восстановления изношенных поверхностей деталей, работающих в парах трения, и может быть использован в различных отраслях народного хозяйства

Изобретение относится к изготовлению конструкций из титановых сплавов и может быть использовано в объемной и листовой штамповке и при термообработке титановых сплавов
Изобретение относится к нанесению покрытий газотермическими методами

Изобретение относится к технологии нанесения покрытий на листовые материалы

Изобретение относится к обработке поверхности перед нанесением покрытий, а также для полирования, шлифования или создания шероховатой поверхности и ее упрочнения

Изобретение относится к обработке изделий дробью и может быть использовано преимущественно для подготовки поверхности стальных деталей к плазменному наполнению, очистки от окалины, упрочнения металлических изделий и создания коррозионной защиты

Изобретение относится к способам газометрического нанесения покрытий на детали из алюминиевых сплавов

Изобретение относится к области буровой техники и используется при строительстве скважин в глубоком и сверхглубоком бурении, а также на горнорудных карьерах при бурении взрывных скважин с продувкой забоя воздухом
Наверх