Способ испытания объектов на воздействие электромагнитного импульса


G01R31 - Устройства для определения электрических свойств; устройства для определения местоположения электрических повреждений; устройства для электрических испытаний, характеризующихся объектом, подлежащим испытанию, не предусмотренным в других подклассах (измерительные провода, измерительные зонды G01R 1/06; индикация электрических режимов в распределительных устройствах или в защитной аппаратуре H01H 71/04,H01H 73/12, H02B 11/10,H02H 3/04; испытание или измерение полупроводниковых или твердотельных приборов в процессе их изготовления H01L 21/66; испытание линий передачи энергии H04B 3/46)

 

Изобретение относится к испытаниям объектов, преимущественно крупногабаритных, на воздействие электромагнитного импульса. Сущность способа заключается в создании электромагнитных воздействий, имитирующих ЭМИ, и оценке параметров аппаратуры объекта после этих воздействий. Электромагнитному воздействию подвергают модель объекта с размещенными внутри и снаружи нее блоками аппаратуры. Геометрические размеры корпуса модели определяют по формуле:

,

где Vм - объем внутри корпуса модели; Sм - площадь поверхности корпуса модели; Vк - объем внутри корпуса объекта; Sк - площадь поверхности корпуса объекта; - относительная магнитная проницаемость материала корпуса модели; - относительная магнитная проницаемость материала корпуса объекта; dм - толщина стенки корпуса модели; dк - толщина стенки корпуса объекта. Технический результат: упрощение и удешевление испытаний аппаратуры крупногабаритных объектов. 1 ил.

Изобретение относится к испытаниям объектов, например, военной техники (преимущественно крупногабаритных) на воздействие электромагнитного импульса (ЭМИ), в частности ядерного взрыва (ЯВ) или грозового разряда, и может быть использовано при испытаниях объектов гражданского назначения.

При разработке радиоэлектронной аппаратуры объектов военной и гражданской техники одной из важных задач является обеспечение ее надежного функционирования в условиях воздействия ЭМИ. С целью проверки работоспособности разрабатываемой аппаратуры в условиях воздействия ЭМИ проводятся испытания на специальных моделирующих установках.

Известные способы испытания объектов на воздействие ЭМИ можно разбить на две группы:

1) испытания с помощью гармонических электромагнитных полей;

2) испытания с помощью импульсных электромагнитных полей.

Способ испытания с помощью гармонических полей заключается в том, что испытываемый объект подвергается воздействию гармонических электромагнитных полей в широком диапазоне дискретных частот с целью определения переходной характеристики объекта. По полученной переходной характеристике, пользуясь методами преобразования Фурье, находят формы и амплитуды полей внутри объекта при воздействии на него ЭМИ.

Поскольку в диапазоне частот, соответствующих спектру ЭМИ, технически невозможно создать в достаточно больших объемах гармонические поля с амплитудами, равными ЭМИ ЯВ, приходится экстраполировать переходную характеристику с малых на большие амплитуды полей, что в случае наличия нелинейных элементов (стальной экран, полупроводники и т.п.) может привести к большим ошибкам.

При втором способе моделирования используются электромагнитные поля, аналогичные по своим основным характеристикам ЭМИ. Этот способ наиболее распространен, так как он дает прямой ответ о параметрах полей, токов и напряжений внутри объекта при воздействии на него ЭМИ.

Для создания импульсных электромагнитных полей, аналогичных ЭМИ, применяются моделирующие установки, которые можно разделить на:

- установки, создающие электромагнитные поля, которые свободно распространяются в пространстве;

- установки, создающие электромагнитные поля в ограниченном объеме.

Наиболее перспективными являются установки, моделирующие ЭМИ в ограниченном объеме. Использование для этой цепи излучателей электромагнитных волн энергетически невыгодно.

Известен способ испытаний (1), заключающийся в использовании бесконечно малых электрических и магнитных диполей - излучателей. Излучатели размещаются во всех точках пространства, ориентированы по трем взаимно-перпендикулярным направлениям и работают на всех частотах. Измерения электрических и магнитных полей и других параметров внутри объекта производятся при размещении излучателя в каждой точке пространства, при каждом из трех направлений ориентации и на каждой частоте излучения.

Недостатки указанного способа заключаются в большой трудоемкости, особенно при испытаниях крупногабаритных объектов.

Наиболее близким по техническому решению является способ испытаний, реализуемый моделирующей установкой, описанной в (2).

Согласно указанному способу испытания на воздействие ЭМИ проводятся путем воздействия имитированных ЭМИ на объект, помещенный в испытательный объем моделирующей установки, при этом контролируются параметры аппаратуры объекта. Для проведения испытаний по указанному способу используются моделирующие установки, например ИЭМИ-10. Эти установки имеют в своем составе генераторы импульсов тока и напряжения и систему полеобразования. Недостатком указанного способа является ограниченный испытательный объем, определяемый размерами системы полеобразования. Для обеспечения эквивалентности воздействия необходимо, чтобы испытательный объем был намного больше объема испытываемого объекта.

Вследствие этого проведение на указанных моделирующих установках испытаний аппаратуры крупногабаритных объектов, таких как корабли, самолеты, штабные и командные машины и т.п., невозможно.

Задача изобретения состоит в упрощении и удешевлении испытаний аппаратуры крупногабаритных объектов.

Указанная задача достигается тем, что электромагнитному воздействию, имитирующему ЭМИ, подвергают модель объекта с размещенными внутри и снаружи нее блоками аппаратуры, причем геометрические размеры корпуса модели определяют из формулы:

где Vм(Vк) - объем внутри корпуса модели (объекта);

Sм(Sк) - площадь поверхности корпуса модели (объекта);

- относительная магнитная проницаемость материала корпуса модели (объекта);

dм(dк) - толщина стенки корпуса модели (объекта).

Предложенный способ испытаний позволяет упростить и удешевить испытания аппаратуры крупногабаритных объектов. Это достигается за счет того, что вместо реального крупногабаритного объекта электромагнитному воздействию на моделирующей установке подвергается малогабаритная модель объекта с размещенными внутри и снаружи нее блоками аппаратуры, при этом обеспечивается равенство экранирующих свойств корпуса объекта и модели. Для обеспечения равенства экранирующих свойств корпуса объекта и модели необходимо обеспечить равенство их импульсных характеристик, что обеспечивается равенством постоянных экрана (3):

,

где d - толщина экрана;

V - объем внутри экрана;

S - площадь поверхности экрана;

r - относительная магнитная проницаемость экрана.

Условие обеспечения равенства постоянных экрана для реального корпуса объекта и его модели позволяет определить геометрические размеры корпуса модели из формулы:

,

где rм - радиус корпуса модели;

rк - радиус корпуса объекта.

Таким образом, соответствующим выбором материала и толщины стенки может быть обеспечен радиус корпуса модели, значительно меньший радиуса корпуса объекта.

При использовании предложенного способа в соответствии с принципом подобия антенн частоты воздействующего ЭМИ должны быть увеличены во столько же раз, во сколько уменьшен размер модели по сравнению с реальным объектом (4).

Сущность изобретения поясняется чертежом, на котором приведена схема устройства для проведения испытаний.

На чертеже обозначены:

1 - генератор импульсов тока и напряжения;

2 - полеобразующая система;

3 - опоры полеобразующей системы;

4 - корпус модели;

5 - системы объекта, размещенные снаружи корпуса;

6 - системы объекта, размещенные внутри корпуса;

7 - измерительная система;

8 - экранированная кабина.

Генератор импульсов тока и напряжения 1 генерирует мощный импульс, который, проходя через полеобразующую систему 2, установленную на опорах 3, формирует в испытательном объеме электромагнитный импульс. Указанный импульс воздействует на аппаратуру 5, 6, размещенную снаружи и внутри корпуса модели 4. Контролируемые сигналы с выходов аппаратуры 5, 6 поступают в систему регистрации 7, размещенную в экранированной кабине 8.

Таким образом, предложенный способ испытания на воздействие ЭМИ позволяет упростить и удешевить испытания аппаратуры крупногабаритных объектов.

Источники информации

1. Ядерный взрыв в космосе, на земле и под землей. Сборник статей, М.: Воениздат, 1974, стр.11-22.

2. В.И.Кравченко “Грозозащита радиоэлектронных средств”. Справочник, М.: Радио и связь, 1991, стр.252.

3. Л.О.Мырова, А.З.Чепиженко “Обеспечение стойкости аппаратуры связи к ионизирующим и электромагнитным излучениям”. М.: Радио и связь, 1998.

4. С.И.Надененко “Антенны” М.: Связьиздат, 1959, стр.230-232.

Формула изобретения

Способ испытания объектов на воздействие электромагнитного импульса (ЭМИ), заключающийся в создании электромагнитных воздействий, имитирующих ЭМИ, и оценке параметров аппаратуры объекта после этих воздействий, отличающийся тем, что электромагнитному воздействию подвергают модель объекта с размещенными внутри и снаружи нее блоками аппаратуры, причем геометрические размеры корпуса модели определяют из формулы

где Vм - объем внутри корпуса модели;

Sм - площадь поверхности корпуса модели;

Vк - объем внутри корпуса объекта;

Sк - площадь поверхности корпуса объекта;

- относительная магнитная проницаемость материала корпуса модели;

- относительная магнитная проницаемость материала корпуса объекта;

dм - толщина стенки корпуса модели;

dк - толщина стенки корпуса объекта.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для определения потребления мощности в портативных электронных устройствах

Изобретение относится к технологии производства полупроводниковых изделий электронной техники, а именно к способам отбраковки внутренних микросоединений полупроводниковых приборов

Изобретение относится к микроэлектронике, а именно к обеспечению надежности партий транзисторов за счет определения потенциально ненадежных приборов и может быть использовано как на этапе производства, так и применения

Изобретение относится к микроэлектронике, а именно к обеспечению качества и надежности полупроводниковых приборов за счет определения потенциально нестабильных полупроводниковых приборов, и может быть использовано как на этапе производства, так и применения
Изобретение относится к электротехнической промышленности, в частности к производству свинцово-кислотных аккумуляторов и аккумуляторных батарей

Изобретение относится к электротехнике и может быть использовано для производства, преобразования и распределения электрической энергии, например, в синхронном генераторе для получения исходных данных, определяющих его параметры в рабочих режимах

Изобретение относится к измерительной технике и может быть использовано в системах электропитания, где требуется производить контроль и обслуживание химических источников тока

Изобретение относится к измерительной технике и может быть использовано для защиты потребителей электрической энергии от перенапряжений, вызванных обрывом нулевого провода, и для обеспечения электро-, пожаро- и взрывобезопасности

Изобретение относится к электротехнике, в частности к способам определения потенциально ненадежных полупроводниковых приборов

Изобретение относится к области электротехники, в частности к производству и эксплуатации интегральных схем (ИС), и может быть использовано для разделения партии на три, имеющих различную надежность, с выделением партии ИС повышенной надежности, с высоким уровнем достоверности в процессе производства, а также на входном контроле на предприятиях производителях радиоэлектронной аппаратуры

Изобретение относится к области измерительной техники

Изобретение относится к области определения физических и химических свойств газов

Изобретение относится к области аналитического приборостроения, в частности для измерения концентрации воды, кислорода и водорода при их совместном присутствии в газовых смесях

Изобретение относится к измерительной технике, в частности, к измерению расстояния и параметров зондируемого материала

Изобретение относится к методам анализа токсичных соединений и может быть использовано при экологическом мониторинге

Изобретение относится к области машиностроения и может быть использовано для диагностики изнашивания узлов трения на основе оценки содержания частиц износа в смазочном материале

Изобретение относится к области прогнозирования остаточного ресурса изделий из тонкостенных оболочек с применением способов и средств неразрушающего контроля (НК) и диагностирования

Изобретение относится к области анализа металлических покрытий

Изобретение относится к способам определения массовой доли меди в серной кислоте, может быть использовано в химической промышленности для контроля качества серной кислоты

Изобретение относится к методам оперативного измерения малых концентраций азота (20...500 ррм) и кислорода (5...50 ррм) в смесях газов азота, кислорода и гелия

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей кислорода и других газов
Наверх