Пресс для диффузионной сварки

 

Изобретение относится к оборудованию для диффузионной сварки, а именно к прессам, предназначенным для создания усилия сдавливания свариваемых поверхностей при температуре диффузионной сварки. Пресс содержит герметичную камеру, заполненную рабочим телом, и выполнен с двумя противоположно расположенными подвижными стенками. Противоположно расположенные подвижные стенки выполнены в виде соосно расположенных с зазором дисков. Между дисками установлены две кольцевые мембраны. Внутренние кромки мембран неразъемно соединены между собой, а наружные кромки каждой из мембран неразъемно соединены с одним из дисков. Это позволяет создать мини-пресс, сопоставимый с размерами свариваемых заготовок, позволяющий автономно и автоматически создавать усилие сдавливания при температуре диффузионной сварки. 2 з.п. ф-лы, 2 ил.

Изобретение относится к оборудованию для диффузионной сварки разнородных заготовок, в частности к оборудованию, предназначенному для создания усилия сдавливания свариваемых поверхностей заготовок при температуре диффузионной сварки. Нагрев и сдавливание свариваемых поверхностей в безокислительной атмосфере являются необходимыми условиями для протекания на границе соединения диффузионных процессов, в результате взаимодействия которых образуется диффузионное сварное соединение.

Известное оборудование для создания усилия сдавливания при диффузионной сварке состоит в основном из промышленных гидравлических прессов малой мощности, как правило, с максимальным усилием до 100 тонн (см. Казаков Н.Ф. Диффузионная сварка материалов. М.: Машиностроение, 1976, с.92-96).

В комплект установки для диффузионной сварки помимо гидравлического пресса входят: вакуумная камера с системой обеспечения вакуума, высокочастотный генератор для нагрева свариваемых заготовок, запорная арматура и т.д. Стоимость полностью укомплектованной установки для диффузионной сварки составляет более 1 млн рублей, при этом на стоимость гидравлического пресса приходится значительная часть этой суммы.

Промышленность не выпускает специализированных для диффузионной сварки гидравлических прессов, т.к. рынок для таких прессов крайне мал. Обычно полный цикл сварки одной заготовки (установка заготовок в камере, вакуумирование, нагрев, сдавливание, выдержка, охлаждение и т.д.) составляет более 2 часов. При таком цикле диффузионной сварки дорогой промышленный гидропресс работает на более часа в смену, что удорожает процесс диффузионной сварки и стоимость получаемого изделия, что порой служит причиной отказа от применения наиболее эффективного метода сварки при соединении металлургически трудно совместимых разнородных металлов и сплавов.

Одним из путей снижения стоимости процесса диффузионной сварки может служить отказ от применения промышленного гидравлического пресса и замена его устройством, изменяющим свою форму при нагреве.

Диффузионная сварка осуществляется при нагреве и сдавливании в безокислительной среде. Фактор нагрева свариваемых заготовок, например в печи, можно использовать также и для создания усилия сдавливания для свариваемых заготовок, если в процессе повышения температуры в печи будет увеличиваться объем какого-либо герметичного устройства, заполненного веществом, увеличивающим свой объем при повышении температуры, а если этому веществу не позволить увеличивать свой объем, то в герметичном устройстве будет подниматься давление.

Основа любого гидравлического пресса состоит из герметичной камеры в виде цилиндра, заполненного рабочим телом, например маслом, и подвижной стенки камеры в виде поршня со штоком, который может перемещаться, если в цилиндре изменять объем масла. В зависимости от давления, с каким поступает в цилиндр масло, на штоке возникает та или иная сила, с которой он может сдавливать, например, свариваемые диффузионной сваркой заготовки.

Задачей, на решение которой направлено заявляемое изобретение, является создание конструкции мини-пресса, который может автономно и автоматически создавать усилие сдавливания при температуре диффузионной сварки, при этом размеры мини-пресса должны быть сопоставимы с размерами свариваемых заготовок.

Технический результат, получаемый при реализации заявляемого изобретения, состоит в том, что мини-пресс выполнен в виде двух соосно расположенных дисков, соединенных между собой эластичной гофрой сильфонного типа, с образованием между дисками герметичной полости, заполненной рабочим телом, которое при нагреве увеличивается в объеме и раздвигает диски, создавая в результате этого усилие сдавливания, если свариваемые заготовки и мини-пресс собраны вместе и ограничены в перемещении.

Указанный технический результат достигается тем, что пресс для сварки, содержащий герметичную камеру, заполненную рабочим телом, выполненную с двумя противоположно расположенными подвижными стенками, при этом противоположно расположенные подвижные стенки выполнены в виде соосно расположенных с зазором дисков, между которыми установлены две кольцевые мембраны, внутренние кромки которых неразъемно соединены между собой, а наружные кромки каждой из мембран неразъемно соединены с одним из дисков;

- кроме того, неразъемные соединения кольцевых мембран с дисками и между собой выполнены с помощью аргонодуговой сварки;

- кроме того, в качестве рабочего тела используют воздух или инертный газ, или газ и воду, или газ и твердое тело, испаряющееся при нагреве.

Конструкция пресса для диффузионной сварки выполнена подобно сильфону, состоящему всего из одной гофры, который заглушен по торцам толстостенными дисками. При окончательной герметизации внутри такого “сильфона” можно оставить воздух или любой другой газ, например аргон, если проводить аргонодуговую сварку в камере, заполненной аргоном. Для повышения рабочего усилия сдавливания при температуре диффузионной сварки в камеру пресса предварительно помимо газа можно налить немного воды, которая при нагреве до температуры диффузионной сварки в несколько раз может увеличить рабочее усилие сдавливания. Для еще большего повышения рабочего усилия сдавливания свариваемых заготовок в камеру пресса можно поместить помимо газа твердое тело, которое при нагреве легко переходит в газообразное состояние, например органическое вещество типа нафталина.

Конструкция пресса показана на фиг.1 и фиг.2.

На фиг.1 показана конструкция пресса в положении после сварки, когда для удобства аргонодуговой сварки наружных кромок кольцевых мембран с дисками последние раздвинуты на величину “S”, а на фиг.2 показано состояние пресса, когда его диски полностью прижаты друг к другу.

Пресс состоит из дисков 1, кольцевых мембран 2 и кольцевых накладок 3 и 4, служащих для повышения качества сварки тонкостенных мембран с толстостенными дисками и между собой при сварке внутренних кромок, а также для обеспечения гарантированного объема в холодном состоянии для рабочего тела при сжатых дисках.

Пресс для диффузионной сварки работает следующим образом.

В холодном состоянии диски 1 относительно легко поджимаются друг к другу за счет сжатия газа в полости, находящейся между ними. Это усилие поджатия зависит в основном от диаметра дисков и величины предварительного их раздвижеиия на расстояние “S”, которое требуется для удобства аргонодуговой сварки.

Если мембранные кольца 2 выполнить из нержавеющей фольги толщиной 0,5 мм, а кольцевые накладки 3 и 4 выполнить толщиной 1 мм, то при полном сжатии дисков, когда технологический зазор “S”, необходимый для сварки, равен нулю, остаточный зазор, образующий полость между дисками, будет равен 3 мм.

Если при сварке технологический зазор “S” выдержать в пределах 5-6 мм, то при полном смыкании дисков 1 в полости пресса по закону Бойля-Мариота образуется исходное рабочее давление воздуха в пределах 2-3 атм.

Полное смыкание дисков является его исходным рабочим положением. Это же сомкнутое положение дисков 1 должно обеспечиваться и сохраняться при сборке с свариваемыми заготовками, а также в процессе нагрева до температуры диффузионной сварки.

Небольшая величина зазора “S”, в пределах до 1 мм, может образовываться в процессе нагрева из-за разности коэффициентов термического расширения между свариваемыми заготовками и тем устройством, с помощью которого предварительно совместно сжимают заготовки и мини-пресс, например, с помощью струбцины.

Заготовки и мини-пресс предварительно должны быть сжаты с таким усилием, чтобы зазор “S” был не более 0,5 мм.

Если диффузионная сварка будет производиться в вакуумируемом контейнере с последующим его нагревом в печи, то собранные в сжатом состоянии заготовки и мини-пресс вместе должны быть установлены таким образом, чтобы они при нагреве до температуры диффузионной сварки не имели возможности перемещаться вдоль оси сжатия, т.е. были бы установлены в корпусе контейнера враспор или стянуты шпильками между двух фланцев.

При таких условиях рабочий объем полости мини-пресса в процессе нагрева сохраняется практически неизменным. На основании газового закона Ж.Шарля, по которому при постоянном объеме V какой-либо емкости, заполненной идеальным газом, отношение давления Р внутри емкости к абсолютной температуре этого газа всегда постоянно, т.е. при V=const. Отсюда следует, что давление в полости с постоянным объемом при нагреве будет расти пропорционально абсолютной температуре.

Если первоначальное давление газа Р при комнатной температуре, полученное путем сжатия дисков 1 до упора, будет равно около 2 атм, то при нагреве до 1000С это давление возрастет до 7-8 атм, а при площади дисков, например, 100-120 см2 усилие сдавливания составит около 800-1000 кг. Конструкция мини-пресса позволяет как уменьшить, так и увеличить это усилие при тех же габаритах мини-пресса. Чтобы уменьшить усилие сдавливания, необходимо произвести окончательную заварку последнего шва при полном сжатии дисков, а для повышения, наоборот, заварить последний участок шва при максимальном размере расстояния “S” между дисками, или добавить в полость между дисками воду или легко испаряющееся при нагреве твердое тело, например нафталин.

Пример осуществления

Изготовили пресс для диффузионной сварки с дисками диаметром 110 мм и внутренним диаметром кольцевых мембран 40 мм.

Толщину дисков 1 выбрали 8 мм, а толщину кольцевых мембран 2-0,5 мм. При этом кольцевые накладки 3 и 4 изготовили шириной 4 мм и толщиной 1 мм.

Неразъемное соединение дисков с мембранами и мембран между собой производили аргонодуговой сваркой. Технологический зазор при сварке последнего участка сварного шва выдерживали в пределах 4 мм.

Лабораторные испытания в кольцевой печи показали, что при полном предварительном сжатии дисков и нагреве до 1000С они создали на динамометре, с помощью которого они были поджаты, усилие в 1050 кг. После охлаждения и снятия предварительного сжатия диски разошлись на 4 мм, что позволяет их использовать повторно.

Формула изобретения

1. Пресс для диффузионной сварки, содержащий герметичную камеру, заполненную рабочим телом, выполненную с двумя противоположно расположенными подвижными стенками, отличающийся тем, что противоположно расположенные подвижные стенки выполнены в виде соосно расположенных с зазором дисков, между которыми установлены две кольцевые мембраны, внутренние кромки которых неразъемно соединены между собой, а наружные кромки каждой из мембран неразъемно соединены с одним из дисков.

2. Пресс для диффузионной сварки по п.1, отличающийся тем, что неразъемные соединения кольцевых мембран с дисками и между собой выполнены с помощью аргонодуговой сварки.

3. Пресс для диффузионной сварки по п.1 или 2, отличающийся тем, что рабочим телом является воздух или инертный газ, или газ и вода, или газ и твердое тело, испаряющееся при нагреве.

РИСУНКИРисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области диффузионной сварки, а именно к оборудованию для диффузионной сварки корпусов шаговых двигателей

Изобретение относится к внутренним центраторам для сборки, центровки и сварки коротких труб, преимущественно для диффузионной сварки в вакууме с использованием электронно-лучевого нагрева свариваемых поверхностей

Изобретение относится к оборудованию для сварки с подогревом и может быть использовано в радиотехнической, электронной и приборостроительной промышленности

Изобретение относится к сварочной технике, в частности к установкам для диффузионной сварки в вакууме коротких труб внахлестку из разнородных материалов, которые практически не поддаются сварке плавлением, например такие трубчатые соединения как титан-сталь, цирконий-сталь и т.д

Изобретение относится к сварочной технике, в частности к установкам, снабженным устройствами, позволяющими одновременно загружать в вакуумную камеру группу заготовок и сваривать их за одну вакуумную откачку рабочей камеры

Изобретение относится к оборудованию для сварки давлением с подогревом, в частности к установкам для диффузионной сварки полупроводников с диэлектриками, и может быть использовано в радиотехнической, электронной и приборостроительной отраслях промышленности

Изобретение относится к сварочной технике, в частности к установкам для диффузионной сварки в вакууме

Изобретение относится к диффузионной сварке, в частности к устройствам для контроля процесса сварки путем измерения температуры свариваемых поверхностей в высокочастотном индукторе

Изобретение относится к холодной сварке давлением пластичных металлов, например медных, алюминиевых, серебряных, как из одинаковых металлов, так и в комбинации из различных металлов

Изобретение относится к диффузионной сварке, в частности к оборудованию для ее осуществления, и может быть использовано в авиационной и других отраслях промышленности

Изобретение относится к области сварки трением с перемешиванием, в частности к способу изготовления штифта инструмента для перемешивающей сварки трением, который устанавливается в держателе инструмента. Способ включает изготовление металлической основы штифта и оболочки из керамического материала. Вначале из керамического материала изготавливают оболочку в виде стакана. Затем внутри оболочки формируют металлическую основу штифта из порошков жаропрочных материалов методом порошковой металлургии. После чего в керамической оболочке выполняют по меньшей мере одну термокомпенсационную прорезь, проходящую по всей высоте оболочки, глубиной, равной ее толщине. Термокомпенсационная прорезь может быть направлена вдоль оси инструмента, или в виде наклонной к оси инструмента линии, или в виде винтовой линии. Способ позволяет получить из керамического материала равноплотную по высоте толстую оболочку штифта с применением несложных технологических операций и в совокупности с термокомпенсационными прорезями существенно повысить срок службы инструмента. 3 з.п. ф-лы, 8 ил.

Изобретение может быть использовано для высокотемпературной обработки стержневых деталей, в том числе для формирования композиционных, например стеклометаллических, материалов и изделий путем диффузионной сварки стеклянного и металлического узлов-заготовок. Корпус для обрабатываемых деталей камеры термической печи выполнен из керамики и содержит съемные днище и крышку. Стенки корпуса по высоте сформированы, по меньшей мере, из двух установленных друг на друга одинаковых полых модулей с возможностью их разъемного электрического соединения с соответствующими выводами соседних модулей. Средство нагрева выполнено в виде спирали, зафиксированной на внутренней поверхности каждого модуля корпуса камеры. Днище выполнено в виде плоского диска, снабженного в центральной его части соосным цилиндрическим выступом, с возможностью размещения на нем с зазором нижнего конца модуля корпуса камеры. Крышка корпуса выполнена в виде плоского диска, имеющего сквозное соосное отверстие и снабженного соосным кольцевым выступом, имеющим цилиндрическую проточку, внутренний диаметр которой равен диаметру полости верхнего конца состыкованного с ним модуля корпуса камеры. Камера обеспечивает возможность легкой адаптации устройства под выпуск изделий различных размеров по высоте при сохранении высокой степени заполнения объема камеры. 2 з.п. ф-лы, 3 ил.

Термическая печь может быть использована для формирования композиционных материалов и изделий путем диффузионной сварки стеклянного и металлического узлов заготовок. В полости несущего корпуса печи размещена камера, выполненная из термостойкого материала, со средством электрического нагрева, термопарой со средством управления нагревом. Корпус камеры выполнен разборным из керамических съемного днища, крышки и составной боковой стенки из двух трубообразных модулей. Средство нагрева выполнено в виде спирали, зафиксированной на внутренней поверхности верхнего конца каждого трубообразного модуля. В составе печи использованы не менее двух камер, установленных вертикально и параллельно друг другу. Спирали отдельных модулей каждой камеры соединены последовательно в одну электрическую цепь, и электрические цепи всех камер соединены последовательно и подключены к клеммам регулируемого трансформатора, включенного в сеть 220 В. Средство нагружения обрабатываемых деталей содержит внешние нагрузочные шпильки, по одной на каждую камеру, пропущенные через сквозные центральные отверстия крышек с возможностью силового взаимодействия с заготовками обрабатываемых деталей, и нагрузочный механизм, выполненный с возможностью силового контактирования с торцами шпилек выступающими над крышками камер. Обеспечена возможность обработки деталей различных размеров по высоте при сохранении высокой степени заполнения объема камеры. 3 з.п. ф-лы, 5 ил.

Изобретение может быть использовано при изготовлении диффузионной сваркой приборов фотоники, в частности при соединении пьезокристаллических преобразователей и акустооптических кристаллов. На основании установлен колпак с образованием вакуумной камеры и смонтирован каркас, содержащий нижний элемент, верхний элемент и соединяющие их стойки. Средство для позиционирования одной из свариваемых деталей установлено на подвижном элементе, снабженном средствами его перемещения. Средство для позиционирования второй детали смонтировано на нижнем элементе каркаса. Средство испарения металла состоит из неподвижной и подвижной частей, на последней из которых закреплен испарительный элемент, и снабжено приводом, обеспечивающим перемещение подвижной части между свариваемыми деталями при нанесении металлической прослойки. Техническим результатом является повышение точности фиксации свариваемых деталей относительно друг друга, повышение точности регулирования и поддержания усилия сжатия во время процесса сварки, уменьшение градиентов деформации оптических кристаллов и высокая повторяемость результатов диффузионной сварки. 2 ил.
Наверх