Сверхвысокочастотный плазмотрон



Сверхвысокочастотный плазмотрон
Сверхвысокочастотный плазмотрон
Сверхвысокочастотный плазмотрон
Сверхвысокочастотный плазмотрон
H05H1/46 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)
H05H1/30 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)
H05H1/26 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2251824:

Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Контакт" (RU)

Изобретение относится к области машиностроения, в частности к сверхвысокочастотным плазмотронам для получения низкотемпературной плазмы для обработки материалов при давлении ниже атмосферного. На внутренней проводящей поверхности разрядной камеры выполнены один или несколько кольцевых радиальных пазов, пазы могут быть выполнены в виде короткозамкнутых отрезков коаксиальной линии с проводящими стенками глубиной, равной четверти длины волны электромагнитных колебаний генератора. Изобретение позволяет повысить эффективность взаимодействия электромагнитной энергии с плазмообразующим газом. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области машиностроения, точнее к сверхвысокочастотным плазмотронам для получения низкотемпературной плазмы для обработки материалов при давлениях ниже атмосферного.

Известны сверхвысокочастотные плазмотроны, работа которых основана на явлении электронно-циклотронного резонанса при взаимодействии электромагнитной сверхвысокочастотной энергии с газом в магнитном поле. Такие плазмотроны имеют генератор электромагнитных сверхвысокочастотных колебаний, разрядную камеру с вакуумно-плотными стенками, линию передачи сверхвысокочастотной энергии от генератора в разрядную камеру, электромагнит постоянного тока для образования в объеме разрядной камеры магнитного поля, направление которого ориентировано перпендикулярно направлению вектора напряженности электрической составляющей сверхвысокочастотного электромагнитного поля в разрядной камере, узел подачи технологического газа в разрядную камеру (см. Takashi Tsuchimoto. “Plasma stream transport method use of charge exchange plasma source” - J.Vac. Sci. Technol., 15(5), Sept./Oct.1978).

Однако в известных плазмотронах ввиду концентрации электромагнитной энергии у поверхности центрального проводника линии передачи разряд происходит также вблизи поверхности проводника, при этом химически активированные частицы плазмы взаимодействуют с поверхностью центрального проводника, что приводит к появлению примесей в составе плазмы, направляемой к объекту обработки.

Указанный недостаток устранен в сверхвысокочастотном плазмотроне с безэлектродным разрядом, разрядная камера которого выполнена в виде полого цилиндрического волновода.

Наиболее близкий к предлагаемому решению сверхвысокочастотный плазмотрон (см. Keizo Suruki et al. “Microwave Plasma Etching” - Jap. J. of Applied Physics, vol. 16, № 11, November, 1977, pp.1979-1984) имеет генератор электромагнитных колебаний, разрядную камеру в виде цилиндрического металлического волновода, линию передачи сверхвысокочастотной энергии от генератора в разрядную камеру с преобразователем вида колебаний при переходе от прямоугольного волновода к цилиндрической разрядной камере, электромагнит постоянного тока для образования в объеме разрядной камеры магнитного поля и узел подачи технологического газа в разрядную камеру. Открытый конец цилиндрической разрядной камеры служит для выхода плазмы к объекту обработки. Внутри цилиндрической разрядной камеры размещен вакуумно-плотный радиопрозрачный диэлектрический колпак, препятствующий попаданию атмосферного воздуха в зону образования плазмы.

Недостатком известного плазмотрона является то, что образующаяся при бесконтактном разряде область плазмы может быть расположена вдоль продольной оси разрядной камеры случайным образом, зависящим в каждый момент от распределения магнитного поля и узлов и пучностей электромагнитного сверхвысокочастотного поля, что приводит к неповторяемости технологического процесса в плазмохимической установке.

Целью настоящего изобретения является фиксация области плазмообразования в разрядной камере сверхвысокочастотного плазмотрона и повышение эффективности взаимодействия электромагнитной энергии с плазмообразующим газом.

Для достижения этой цели на внутренней проводящей поверхности разрядной камеры выполнен радиальный кольцевой с проводящими стенками паз глубиной, равной четверти длины волны электромагнитных колебаний генератора.

Для расширения частотного диапазона на внутренней поверхности разрядной камеры выполнены несколько радиальных кольцевых пазов каждый глубиной, равной четверти длины волны, соответствующей средней частоте каждого поддиапазона, образованного при равномерном делении частотного диапазона на равные части по числу кольцевых пазов разрядной камеры.

Для уменьшения наружного диаметра разрядной камеры кольцевой паз выполнен в виде отрезка коаксиальной линии длиной, равной четверти длины волны электромагнитных колебаний генератора.

Наличие кольцевого паза в стенке разрядной камеры по своему действию на электромагнитное поле эквивалентно разрыву волноводной линии передачи в поперечном сечении кольцевого паза и сопровождается появлением отраженной волны, двукратным возрастанием напряженности электрической составляющей электромагнитного поля при той же поступающей мощности электромагнитных колебаний и локализацией разряда в газе в области поперечного сечения разрядной камеры, проходящего через кольцевой паз.

На фиг.1 изображен общий вид сверхвысокочастотного плазмотрона с кольцевым радиальным пазом с частичным разрезом разрядной камеры и электромагнита для лучшего показа конструкции.

На фиг.2 изображен общий вид сверхвысокочастотного плазмотрона с несколькими кольцевыми радиальными пазами.

На фиг.3 дан общий вид сверхвысокочастотного плазмотрона с кольцевым пазом в виде отрезка коаксиальной линии.

На фиг.4 изображена эпюра распределения поперечной электросоставляющей электромагнитного поля в разрядной камере и соответствующее расположение области разряда в газе.

Сверхвысокочастотный плазмотрон имеет (фиг.1) разрядную цилиндрическую камеру 1, окруженную электромагнитом постоянного тока 2, радиопрозрачный диэлектрический вакуумно-плотный колпак 3, узел подачи газа 4 с вакуумным уплотнением 5, генератор электромагнитных сверхвысокочастотных колебаний 6, соединяющийся с разрядной камерой 1 преобразователем типа электромагнитных волн 7.

На внутренней поверхности разрядной камеры 1 образован кольцевой цилиндрический паз 8 глубиной, равной четверти длины волны сверхвысокочастотных колебаний генератора 6.

Сверхвысокочастотный плазмотрон (фиг.2) имеет несколько, в данном случае два, кольцевых паза 8 и 9, глубиной, равной четверти длины волны середины каждого поддиапазона, на которые условно разбит диапазон рабочих частот генератора.

Сверхвысокочастотный плазмотрон (фиг.3) имеет кольцевой паз 10, выполненный в виде коаксиальной линии длиной, равной четверти длины волны генератора.

Работу плазмотрона иллюстрирует фиг.4, на которой рядом со схематическим изображением разрядной камеры 1 с пазом 8, электромагнита постоянного тока 2, создающего магнитное поле внутри разрядной камеры, условно изображенное на фиг.4 в виде силовых (штриховых) линий 12, изображено распределение электрической составляющей электромагнитного сверхвысокочастотного поля Е в зависимости от точек наблюдения вдоль оси Z разрядной камеры. Плоскость сечения “0-0”, проходящая по кольцевому пазу 8, определяет начальную точку отсчета “0” координат оси Z. На фиг.4 принято распространение электромагнитной энергии от генератора сверху вниз. При отсутствии кольцевого паза 8 напряженность поля Ео была бы постоянной по длине разрядной камеры. Наличие радиального паза 8 приводит к отражению электромагнитной волны с образованием стоячей волны 13, двукратным увеличением напряженности

электрической составляющей электромагнитного поля в области сечения “0-0” при той же мощности генератора и уменьшением напряженности проходящей волны 14.

Разряд в газе 15 образуется в области максимальной напряженности электрической составляющей электромагнитного поля в сечении “0-0” и удерживается в этом сечении ввиду уменьшения напряженности поля при удалении в обе стороны от сечения “0-0”.

Наличие в сверхвысокочастотном плазмотроне кольцевого паза глубиной, равной четверти длины волны, приводит к фиксации в продольном вдоль оси плазмотрона направлении области плазмообразования в разрядной камере, что позволяет стабильно вести технологические процессы с использованием плазмы. Снижается в четыре раза мощность генератора электромагнитных колебаний, необходимая для создания пороговой напряженности зажигания разряда в газе, вследствие повышенной напряженности электромагнитного поля в области кольцевого паза.

Наличие нескольких пазов, глубина которых равна четверти длины волны середины поддиапазонов, на которые условно разбит диапазон рабочих частот генератора, позволяет расширить полосу частот действия пазов и предотвратить влияние технологического разброса частот генератора при его изготовлении, устраняет необходимость настройки глубины паза под имеющийся генератор или при его замене в эксплуатации. Выполнение паза в виде отрезка коаксиальной линии уменьшает диаметр разрядной камеры с соответствующим сокращением внутреннего диаметра электромагнита и уменьшением объема обмотки при той же напряженности магнитного поля в разрядной камере.

Наличие паза приводит к уменьшению в несколько раз сверхвысокочастотной энергии, распространяющейся вдоль разрядной камеры за плоскость сечения кольцевого паза по сравнению с плазмотроном без паза, при прочих равных условиях, что уменьшает прямое воздействие сверхвысокочастотной энергии на объект обработки и элементы конструкции установки.

1. Сверхвысокочастотный плазмотрон, содержащий генератор электромагнитных сверхвысокочастотных колебаний, преобразователь типа электромагнитных волн, электромагнит постоянного тока, узел подачи газа, разрядную цилиндрическую камеру, отличающийся тем, что в последней выполнен один или несколько кольцевых радиальных пазов с проводящими стенками каждый глубиной, равной четверти длины волны генератора или четверти длины волны середины каждого поддиапазона, на которые условно разбит диапазон рабочих частот генератора.

2. Сверхвысокочастотный плазмотрон по п.1, отличающийся тем, что кольцевые пазы выполнены в виде короткозамкнутых отрезков коаксиальной линии длиной, равной четверти длины волны генератора.



 

Похожие патенты:

Изобретение относится к области космической техники и может быть использовано при наземных испытаниях и при эксплуатации стационарных плазменных двигателей (СПД) различной мощности и электрореактивных двигательных установок (ЭРДУ) на их основе.

Изобретение относится к технике получения плазмы в больших объемах и генерации широких электронных пучков с большим током. .

Изобретение относится к технике, связанной с физикой плазмы и проблемой управляемого ядерного синтеза, и применяется в качестве индуктора токамака. .

Изобретение относится к устройствам и способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменной технике и плазменной обработке материалов.

Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах.

Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах.

Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах.

Изобретение относится к газоразрядной технике и может быть использовано в газоразрядных устройствах для спектроскопического анализа газов и их смесей, например для определения состава выдыхаемых смесей газов в медицинской диагностике, а также в качестве компактного источника света.

Изобретение относится к газоразрядной технике и может быть использовано в газоразрядных устройствах для спектроскопического анализа газов и их смесей, например для определения состава выдыхаемых смесей газов в медицинской диагностике, а также в качестве компактного источника света.

Изобретение относится к области космической техники и может быть использовано при наземных испытаниях и при эксплуатации стационарных плазменных двигателей (СПД) различной мощности и электрореактивных двигательных установок (ЭРДУ) на их основе.

Изобретение относится к технике получения плазмы в больших объемах и генерации широких электронных пучков с большим током. .

Изобретение относится к технике, связанной с физикой плазмы и проблемой управляемого ядерного синтеза, и применяется в качестве индуктора токамака. .

Изобретение относится к устройствам и способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменной технике и плазменной обработке материалов.

Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах.

Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах.

Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть использовано в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах.

Изобретение относится к газоразрядной технике и может быть использовано в газоразрядных устройствах для спектроскопического анализа газов и их смесей, например для определения состава выдыхаемых смесей газов в медицинской диагностике, а также в качестве компактного источника света.

Изобретение относится к газоразрядной технике и может быть использовано в газоразрядных устройствах для спектроскопического анализа газов и их смесей, например для определения состава выдыхаемых смесей газов в медицинской диагностике, а также в качестве компактного источника света.

Изобретение относится к области космической техники и может быть использовано при наземных испытаниях и при эксплуатации стационарных плазменных двигателей (СПД) различной мощности и электрореактивных двигательных установок (ЭРДУ) на их основе.
Наверх