Способ выработки навигационных параметров и вертикали места

Изобретение относится к технике приборостроения, а именно, к навигационным приборам для определения основных навигационных параметров позиционирования воздушных и наземных объектов. Технический результат - повышение точности за счет расширения динамического диапазона измерения гироскопической вертикали. Для достижения данного результата сигналы управления гироплатформами формируют таким образом, чтобы обеспечить нелинейную связь между значением скоростной девиации и значением горизонтальной составляющей абсолютной угловой скорости. При этом дополнительно используют информацию и свойства инерциальной системы с интегральной коррекцией, а гироплатформы устанавливают в общем карданном кольце с вертикальной наружной осью. 2 ил.

 

Изобретение относится к гироскопическому приборостроению и может быть использовано для обеспечения навигации морских, воздушных и наземных объектов.

Известен способ выработки навигационных параметров и вертикали места, включающий измерение составляющих кажущегося ускорения при помощи акселерометров, установленных по осям приборных трехгранников, каждый из которых связан с данной (не менее двух) гироплатформ, формирование сигналов управления гироплатформами, отработку сформированных сигналов при помощи гироскопов и вычисление навигационных параметров и вертикали места, при этом, сигналы управления основной и дополнительной гироплатформами формируют из условия обеспечения неравенства скоростных и отсутствия баллистических девиаций [1].

Недостатком известного способа являются ограниченные возможности точностных и динамических характеристик.

Целью изобретения является повышение точностных характеристик и расширение динамических возможностей способа.

Технический эффект достигается тем, что сигналы управления гироплатформами формируют таким образом, чтобы обеспечить нелинейную связь между значением скоростной девиации и значением горизонтальной составляющей абсолютной угловой скорости, например: для основной гироплатформы по закону и для дополнительной гироплатформы по закону

где α 1 и α 2 - значения скоростных девиаций гироплатформ;

- значение горизонтальной составляющей абсолютной угловой скорости;

R - радиус Земли;

ω 0 - частота Шулера;

n1, n2 - параметры системы,

при этом дополнительно используют информацию и свойства инерциальной системы с интегральной коррекцией, а гироплатформы в карданных подвесах устанавливают в общем карданном кольце с вертикальной наружной осью, которую монтируют перпендикулярно стабилизированной в горизонте платформе, созданной инерциальной системой с интегральной коррекцией. На фиг.1 представлена функциональная блок-схема инерциальной системы для осуществления способа.

Рассматриваемая инерциальная система с линейной коррекцией состоит из двух конструктивно идентичных стабилизированных гироплатформ 1 и 1` и блока 2 управления и выработки выходных параметров БУВВП. На каждой стабилизированной гироплатформе расположен один трехстапенной гироскоп 3 и 3`. При этом кинетический момент гироскопа перпендикулярен плоскости стабилизированной гироплатформы. Гироскопы имеют датчики 4, 5 и 4` 5` моментов и датчики углов 6, 7 и 6`, 7`. Кроме того, на каждой стабилизированной гироплатформе установлены акселерометры 8, 9 и 8`, 9`. Оси чувствительности акселерометров на каждой гироплатформе ортогональны между собой и параллельны плоскости гироплатформы. Ось одного акселерометра параллельна внутренней оси карданного подвеса гироплатформы. Наружные оси карданных подвесов 11 и 11` установлены в общем карданном кольце 18 (см. фиг.2). Ось общего карданного кольца установлена на стабилизированной в горизонте платформе 19. Оси 11 и 11` параллельны плоскости стабилизированной платформы 19 и параллельны между собой. На оси общего карданного кольца расположены следящий двигатель 20 и датчик курса 21. На общем кольце 18 размещены также датчики углов 17 и 17`, замеряющие скоростные поправки α 1 и α 2 и следящие двигатели 15 и 15`. Выходы датчиков углов 6, 7 и 6`, 7` углов гироскопов 3 и 3` через посредство усилителей 12, 13 и 12`, 13` соединены с входами следящих двигателей 14, 15 и 14`, 15`, которые связаны с осями карданного подвеса. С этими же осями связаны датчики углов 16, 17 и 16`, 17`. Входы датчиков 4, 5 и 4`, 5` момента гироскопов 3 и 3` соединены с соответствующими выходами блока 2 управления и выработки выходных параметров. Выходы акселерометров 8, 9 и 8`, 9` и датчики углов 16, 17 и 16`, 17` соединены с соответствующими входами БУВВП-2. Информационно БУВВП-2 связан с инерциальной системой с интегральной коррекцией.

Выходами БУВВП для потребителей являются К - курс объекта, ϕ - широта места, λ - долгота места, θ и ψ - углы бортовой и килевой качек.

Функционирует предлагаемая система следующим образом. Каждая гироплатформа с помощью следящих двигателей 14, 15 и 14`, 15` соответственно по сигналам рассогласования датчиков углов 6, 7 и 6`, 7` гироскопов 3 и 3` все время удерживается в одной плоскости с кожухом гироскопа.

Кожух каждого гироскопа вместе с гироплатформой приводится в положение, соответствующее заданному значению скоростной девиации для данной гироплатформы, с помощью моментов, накладываемых через датчики моментов 4, 5 и 4` 5` гироскопов 3 и 3` токами управления по сигналам, вырабатываемым в БУВВП. Поскольку заданные значения скоростных девиаций различны для каждой гироплатформы, разности показаний датчиков углов 17 и 17` являются исходными источниками информации для определения горизонтальной составляющей абсолютной угловой скорости трехгранника Дарбу. Плоскость общего карданного кольца 18 с помощью следящего двигателя 20 все время удерживается в направлении, перпендикулярном плоскости компасного меридиана, специальной следящей системой.

В качестве исходной системы координат выберем сопровождающий трехгранник Дарбу E° N° ξ ° , ориентированный осью ON° по горизонтальной составляющей абсолютной угловой скорости Тогда проекции абсолютной угловой скорости трехгранника E° N° ξ ° на его оси будут O; r.

Проекции ускорения вершины трехгранника E° N° ξ ° на его оси суть (r· V); g, где g - ускорение силы тяжести.

С кожухом гироскопа первой гироплатформы жестко свяжем правую систему координат E1N1ξ1. С кожухом гироскопа второй гироплатформы – систему координат E2N2ξ2. Систему координат E1N1ξ1 получим поворотами вокруг оси OE° на угол α 1 вокруг вспомогательной оси ON1,1 на угол β 1 и вокруг оси Oξ 1 на угол Δ K1. Систему координат E2N2ξ2 получим поворотами вокруг оси OЕ° на угол α 2 вокруг вспомогательной оси ON2,1 на угол β 2 и вокруг оси Oξ 2 на угол Δ K2.

Проекции абсолютной угловой скорости трехгранников E1N1ξ1 и E2N2ξ2 на их оси ОE1; ON1; OE2 n ON2 будут

Проекции ускорения вершин трехгранников E1N1ξ1 и E2N2ξ2 на оси OE1, ON1 и оси OE2; ON2 будут

Для обеспечения инвариантных значений скоростных девиаций

сигналы управления гироскопами в системах координат E1N1ξ1 и E2N2ξ2 могут иметь различный вид, например,

или

где

Для обеспечения инвариантных значений скоростных девиаций, например: Сигналы управления гироскопами могут иметь вид:

Сигнал, обеспечивающий устойчивость управления следящим двигателем 20, будет

где Δ Kгк - погрешность выработки компасного курса;

F - передаточная функция.

При n1>1 и n2>1 увеличивается направляющая сила, воздействующая на гироскоп, и тем самым уменьшается влияние дрейфа гироскопа на точность вырабатываемых параметров.

Для максимального диапазона измерение примем n2=-n1.

По значению угла α пр. или по разности ускорения WN1-WN2 вырабатывают горизонтальную составляющую абсолютной угловой скорости из соотношений

Вертикальную составляющую абсолютной угловой скорости трехгранника Дарбу r вырабатывают из соотношения

По значениям rпр и курсу компасному Kгк вырабатывают координаты места ϕ и λ и курс объекта K.

Инерциальная система с интегральной коррекцией, обеспечивающая стабилизацию гироплатформ в горизонте, по горизонтальным составляющим абсолютной угловой скорости трехгранника Дарбу может определять самостоятельно значения компасного курса объекта и значение самой горизонтальной составляющей абсолютной угловой скорости По показаниям акселерометров инерциальная система может определять проекции ускорения вершины трехгранника Дарбу E° N° ξ ° на его оси ON° и ОЕ°

Указанная информация вместе с одноименной информацией, выработанной рассматриваемой инерциальной системой с линейной коррекцией, может быть использована для управления обеими этими системами. При этом, используя сигналы разности одноименной информации, обеспечивают асимптотическую устойчивость (демпфирование) этих двух систем, а также оценку их инструментальных погрешностей.

Для совместной работы с рассматриваемой инерциальной системой может быть использована любая модель задачи инерциальной системы с интегральной коррекцией. При этом в качестве стабилизированной в горизонте платформы может быть использована платформа либо с косвенной стабилизацией по сигналам инерциальной системы с интегральной коррекцией, либо собственно гироплатформа инерциальной системы полуаналитического типа.

Источники информации:

1. В.А.Беленький - Патент №2046289 РФ.

Способ выработки навигационных параметров и вертикали места, включающий измерение составляющих кажущегося ускорения при помощи акселерометров, установленных по осям приборных трехгранников, каждый из которых связан с соответствующей гироплатформой, формирование сигналов управления гироплатформами, отработку сформированных сигналов при помощи гироскопов и вычисление навигационных параметров и вертикали места, при этом сигналы управления основной и дополнительной гироплатформами формируют из условия обеспечения неравенства скоростных и отсутствия баллистических девиаций, отличающийся тем, что сигналы управления гироплатформами формируют таким образом, чтобы обеспечить нелинейную связь между значением скоростной девиации и значением горизонтальной составляющей абсолютной угловой скорости, при этом дополнительно используют информацию и свойства инерциальной системы с интегральной коррекцией, а гироплатформы в карданных подвесах устанавливают в общем карданном кольце с вертикальной наружной осью, которую монтируют перпендикулярно стабилизированной в горизонте платформе, в созданной инерциальной системе с интегральной коррекцией.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно к технике коррекции позиционной погрешности в навигационных системах. .

Изобретение относится к гироскопическому приборостроению и может быть использовано для обеспечения навигации морских, воздушных и наземных объектов. .

Изобретение относится к области авиационного приборостроения и может быть использовано в системах отображения информации пилотируемых летательных аппаратов. .

Изобретение относится к системам ориентации и навигации подвижных объектов. .

Изобретение относится к технике программного позиционирования и ориентации подвижных объектов, в частности к технике угловой ориентации или позиционирования космических аппаратов.

Изобретение относится к гироскопическому приборостроению и может быть использовано для обеспечения навигации морских, воздушных и наземных движущихся объектов. .

Изобретение относится к гироскопическому приборостроению и может быть использовано для обеспечения навигации морских, воздушных и наземных объектов. .

Изобретение относится к способу и устройству для определения местоположения транспортного средства на определенной территории, в частности в складских помещениях.

Изобретение относится к области приборостроения и предназначено для определения угловых координат светящегося ориентира, в частности для определения направления на Солнце в системе координат космического аппарата.

Изобретение относится к измерительной технике, в частности к испытательным стендам для проведения контроля характеристик инерциальных измерителей, в состав которых входят микромеханические вибрационные гироскопы-акселерометры

Изобретение относится к области приборостроения и может быть использовано в системах ориентации, определяющих параметры движения объекта, в частности перемещения, линейной скорости, угловой скорости относительно инерциальной, географической, стартовой или других систем координат

Изобретение относится к области приборостроения и может найти применение в системах определения их координат объектов с большой скоростью вращения по одной оси

Изобретение относится к гироскопическому приборостроению и может быть использовано для обеспечения навигации движущихся объектов

Изобретение относится к области измерительной техники и может быть использовано в магнитной навигации для определения угловых положений автоматических подводных, надводных и летательных аппаратов, в нефтепромысловой геофизике для определения углового положения буровой скважины

Изобретение относится к методам и средствам ориентации в пространстве на основе гравиметрических измерений в интересах навигации, топографической привязки объектов военной техники (артиллерии, ракет и т.п.) и непосредственно в геодезической гравиметрии и геофизической разведке полезных ископаемых

Изобретение относится к гироскопической технике, а более конкретно к двухосным гироскопическим стабилизаторам оптической линии визирования, работающим на подвижных объектах и предназначенным для стабилизации и управления линией визирования

Изобретение относится к области гироскопических систем ориентации преимущественно кораблей, предназначено для выработки с высокой точностью углов ориентации площадки корабля с учетом деформации корпуса корабля в месте расположения потребителя углов ориентации и имеющего центральный гироазимутгоризонт (ГАГ)

Изобретение относится к области навигационного приборостроения с использованием магнитного поля Земли и предназначено для построения приборов измерения магнитного курса и углов наклона подвижных объектов
Наверх