Составной катод и устройство для плазменного поджига, в котором используется составной катод



Составной катод и устройство для плазменного поджига, в котором используется составной катод
Составной катод и устройство для плазменного поджига, в котором используется составной катод
Составной катод и устройство для плазменного поджига, в котором используется составной катод
Составной катод и устройство для плазменного поджига, в котором используется составной катод
Составной катод и устройство для плазменного поджига, в котором используется составной катод
Составной катод и устройство для плазменного поджига, в котором используется составной катод
Составной катод и устройство для плазменного поджига, в котором используется составной катод
H05H1/24 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2260155:

ЯНЬТАЙ ЛУНЮАНЬ ПАУЭР ТЕКНОЛОДЖИ КО., ЛТД. (CN)

Изобретение относится к плазменному поджигу пылевидного угля. Устройство для непосредственного поджига котла на пылевидном угле содержит генератор плазмы, горелку на пылевидном угле, кронштейн плазмогенератора и источник питания постоянного тока. Генератор плазмы содержит составной катод, составной анод, электромагнитную катушку, катушку для перемещения дуги и линейный двигатель, при этом горелка на пылевидном угле содержит трубу для пылевоздушной смеси, трубу для входа в камеру сгорания первой ступени, трубу для входа в камеру сгорания второй ступени, входную трубу для первичной пылевоздушной смеси, камеру сгорания первой ступени, камеру сгорания второй ступени, камеру сгорания третьей ступени, камеру сгорания четвертой ступени, сопло горелки и направляющую пластину для регулирования концентрации порошка. Составной катод содержит головку катода, втулку для пуска дуги, уплотнительные гайки, пластину катода, охлаждающее сопло, электропроводную трубку, трубопровод для подачи воды, трубку для входа воды, трубопровод для выхода воды и колпачок на конце катода. Пластина катода имеет форму цилиндр плюс конус, прикреплена к головке катода посредством сварки и изготовлена из материала на основе Ag, который обладает высокой электропроводностью и высокой теплопроводностью, и оксид которого также обладает проводимостью, причем сопло имеет форму, которая сначала сходится и затем расходится. Составной анод генератора плазмы содержит уплотнительное кольцо, корпус анода, полость для охлаждающей воды, сопло анода, тело анода, основание анода, трубопровод для подачи воды и трубопровод для выхода воды, причем составной анод образован путем сварки двух труб с соплами, один конец составного анода приварен к соплу анода, и другой конец приварен к основанию анода. Корпус анода изготовлен из сплава на основе Ag, и сопло анода изготовлено из сплава на основе меди или Ag. Составной анод окружен катушкой для перемещения дуги. Горелка на пылевидном угле содержит сопло горелки, камеру сгорания первой ступени, камеру сгорания второй ступени, камеру сгорания третьей ступени, камеру сгорания четвертой ступени, трубу для пылевоздушной смеси, входную трубу для первичной пылевоздушной смеси, трубу для входа вспомогательного воздуха, направляющую пластину для первичной пылевоздушной смеси, направляющую пластину для регулирования концентрации порошка, причем эти элементы скреплены посредством сварки с соединительной плитой или посредством соединения болтами, при этом поток пылевидного угля, входящий через трубу для первичной пылевоздушной смеси, разделяется на три потока для прохождения через направляющую пластину камеры сгорания первой ступени, направляющую пластину камеры сгорания второй ступени и направляющую пластину для первичной пылевоздушной смеси соответственно в определенную камеру сгорания первой ступени, камеру сгорания второй ступени и камеру сгорания третьей ступени, причем вспомогательный воздух, поступающий из трубы для входа вспомогательного воздуха, разделяется на три потока, которые соответственно охлаждают наружный цилиндр камеры сгорания первой ступени, камеру сгорания третьей ступени и наружную стенку камеры сгорания четвертой ступени, часть вспомогательного воздуха поступает в пространство между внутренней стенкой камеры сгорания четвертой ступени и наружной стенкой камеры сгорания первой ступени, чтобы добавлять кислород для облегчения горения, причем направление потока пылевидного угля высокой концентрации в камере сгорания первой ступени изменяется посредством направляющей пластины камеры сгорания первой ступени из радиального в осевой поток, а направляющая пластина для регулирования концентрации порошка предназначена для регулирования концентрации пылевидного угля до величины, облегчающей зажигание. Изобретение обеспечивает непрерывную и устойчивую работу генератора и эксплуатационную надежность горелки. 2 н. и 8 з.п. ф-лы, 7 ил.

 

Область техники

Настоящее изобретение относится к катоду устройства для плазменного поджига для непосредственного поджига пылевидного угля в горелке и к устройству для плазменного поджига, в котором используется такой катод, и для непосредственного запуска котла на пылевидном угле. Устройство для плазменного поджига используется на стадии поджига и стадии устойчивого горения с низкой нагрузкой котла на пылевидном угле и может служить также первичной горелкой котла на пылевидном угле.

Предшествующий уровень техники

Поджиг и устойчивое горение с низкой нагрузкой в обычном промышленном котле на пылевидном угле осуществляются с использованием нефти. В 1999 году в котлах на пылевидном угле в государственной энергосистеме Китая было израсходовано около 2,87 миллионов тонн нефти, что оценивается по стоимости примерно в 10 миллиардов юаней в китайской валюте. С 1980-х годов внимание технологов различных стран было сосредоточено на разработке технологий, в которых принята плазменная технология для непосредственного поджига пылевидного угля. В Австралии разработано устройство для плазменного поджига, в котором электроды защищены газообразным азотом, при этом сжигается жирный уголь. В бывшем Советском Союзе было проведено большое количество фундаментальных исследований, и поставлены эксперименты на электростанциях в Baoji и Shaoguan в Китае в 1996 и 1998 г., но эксперименты не были успешными. Университет в Tsinghua и Harebin Boiler Factory в Китае также провели большое количество исследований.

Различные устройства для непосредственного поджига пылевидного угля, разработанные в различных странах, не смогли решить важные технические проблемы, такие как обеспечение непрерывной работы генератора и предотвращение закоксовывания горелки, поэтому не нашли широкого применения.

В патенте на полезную модель №99248829.х раскрыто устройство для плазменного поджига, используемое в горелке с осевым потоком, в которой осуществляется двухступенчатая подача порошка. Однако горелка имеет ряд недостатков, в ней происходит закоксовывание и вымывание. Кроме того, только определенный тип угля может сжигаться в горелке, при этом работа горелки является неустойчивой. Катод горелки представляет собой графитовый стержень, который имеет тенденцию раскалываться, скрап удаляется в отходы в процессе работы, что приводит к короткому циклу работы и нестабильному напряжению.

Чтобы преодолеть указанные недостатки, было предложено устройство, раскрытое в патенте на полезную модель №00245774.1. Однако указанный электрод имеет ряд недостатков. Анод имеет тенденцию разрушаться при пуске дуги, напряжение значительно колеблется, катод имеет короткий срок службы и является дорогим. Следовательно, широкое применение устройства для плазменного поджига нецелесообразно.

Краткое изложение сущности изобретения

Задачей настоящего изобретения является создание составного катода, используемого в устройстве для плазменного поджига.

Другой задачей настоящего изобретения является создание устройства для непосредственного плазменного поджига пылевидного угля в горелке, в котором генератор плазмы может работать непрерывно и устойчиво, в то же время горелка не подвергается закоксовыванию или угару, обеспечивая надежную работу.

Поставленная задача решена путем создания составного катода, используемого в устройстве для плазменного поджига котла на пылевидном угле, содержащем генератор плазмы, горелку на пылевидном угле, кронштейн плазмогенератора и источник питания постоянного тока, указанное устройство характеризуется тем, что генератор плазмы содержит составной катод, составной анод, электромагнитную катушку, катушку для перемещения дуги и линейный двигатель, при этом горелка на пылевидном угле содержит трубу для пылевоздушной смеси, трубу для входа в камеру сгорания первой ступени, трубу для входа в камеру сгорания второй ступени, входную трубу для первичной пылевоздушной смеси, камеру сгорания первой ступени, камеру сгорания второй ступени, камеру сгорания третьей ступени, камеру сгорания четвертой ступени, сопло горелки и направляющую пластину для регулирования концентрации порошка.

Целесообразно, чтобы составной катод содержал головку катода, втулку для пуска дуги, уплотнительные гайки, пластину катода, охлаждающее сопло, электропроводную трубку, трубопровод для подачи воды, трубку для входа воды, трубопровод для выхода воды и колпачок на конце катода.

Полезно, чтобы пластина катода имела форму цилиндр плюс конус, была прикреплена к головке катода посредством сварки и изготовлена из материала на основе KMnO, который обладает высокой электропроводностью и высокой теплопроводностью, и оксид которого также обладает проводимостью, причем сопло имеет форму, которая сначала сходится и затем расходится.

Выгодно, чтобы составной анод генератора плазмы содержал уплотнительное кольцо, корпус анода, полость для охлаждающей воды, сопло анода, тело анода, основание анода, трубопровод для подачи воды и трубопровод для выхода воды, причем составной анод образован путем сварки двух труб с соплами, один конец составного анода приварен к соплу анода, и другой конец приварен к основанию анода.

Предпочтительно, чтобы корпус анода был изготовлен из сплава на основе KMnO, и сопло анода изготовлено из сплава на основе меди или KMnO.

Полезно, чтобы составной анод был окружен катушкой для перемещения дуги.

Выгодно, чтобы горелка на пылевидном угле содержала сопло горелки, камеру сгорания первой ступени, камеру сгорания второй ступени, камеру сгорания третьей ступени, камеру сгорания четвертой ступени, трубу для пылевоздушной смеси, входную трубу для первичной пылевоздушной смеси, трубу для входа вспомогательного воздуха, направляющую пластину для первичной пылевоздушной смеси, направляющую пластину для регулирования концентрации порошка, причем эти элементы скреплены посредством сварки с соединительной плитой или посредством соединения болтами, при этом поток пылевидного угля, входящий через трубу для первичной пылевоздушной смеси, разделяется на три потока для прохождения через направляющую пластину камеры сгорания первой ступени, направляющую пластину камеры сгорания второй ступени и направляющую пластину для первичной пылевоздушной смеси соответственно в определенную камеру сгорания первой ступени, камеру сгорания второй ступени и камеру сгорания третьей ступени, причем вспомогательный воздух, поступающий из трубы для входа вспомогательного воздуха, разделяется на три потока, которые соответственно охлаждают наружный цилиндр камеры сгорания первой ступени, камеру сгорания третьей ступени и наружную стенку камеры сгорания четвертой ступени, часть вспомогательного воздуха поступает в пространство между внутренней стенкой камеры сгорания четвертой ступени и наружной стенкой камеры сгорания первой ступени, чтобы добавлять кислород для облегчения горения, причем направление потока пылевидного угля высокой концентрации в камере сгорания первой ступени изменяется посредством направляющей пластины камеры сгорания первой ступени из радиального в осевой поток, а направляющая пластина для регулирования концентрации порошка предназначена для регулирования концентрации пылевидного угля до величины, облегчающей зажигание.

Поставленная задача решена также путем создания составного катода, используемого в устройстве для плазменного поджига и содержащего головку катода, уплотнительную/ые гайку/и, электропроводную трубку, трубопровод для входа воды, трубку для входа воды, трубопровод для выхода воды, колпачок на конце катода и уплотнительную прокладку, причем головка катода приварена к уплотнительной/ым гайке/ам из меди, электропроводная трубка соединена с гайкой/ами посредством резьбового соединения, трубопровод для входа воды вставлен в другой конец электропроводной трубки и соединен с ней посредством сварки или резьбового соединения, трубопровод для выхода воды закреплен посредством сварки перпендикулярно электропроводной трубке, посредством чего образуется система охлаждения катода, указанный катод характеризуется тем, что на переднем конце катода закреплена втулка для пуска дуги, пластина катода изготовлена из сплава, охлаждающее сопло для охлаждения пластины катода соединено с трубопроводом для входа воды посредством сварки и размещено в центре электропроводной трубки, причем сопло имеет форму, которая сначала сходится и затем расходится.

Целесообразно, чтобы втулка для пуска дуги была изготовлена из графитового стержня, который имеет высокую температуру плавления и высокую электропроводность, закреплена на переднем конце головки катода посредством резьбового соединения, заподлицо с пластиной катода.

Полезно, чтобы пластина катода была изготовлена из сплава на основе KMnO, который имеет высокую теплопроводность и высокую электропроводность, и соединена с головкой катода посредством пайки, и ее поверхность была выполнена заподлицо со втулкой для пуска дуги.

Следовательно, устройство для плазменного поджига согласно изобретению обладает большой энергии, отсутствием коксования, высокой эффективностью горения, устойчивостью пламени, в нем могут использоваться различные угли. Поскольку оборудование согласно изобретению решает ключевые проблемы, касающиеся продолжительности и устойчивости работы устройства для плазменного поджига с высокой энергией, это устройство может широко использоваться в промышленном котле на пылевидном угле. Известный способ пуска и поджига промышленного котла и его устойчивой работы на нефти становится неактуальным и большое количество нефти может быть сэкономлено.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов его воплощения со ссылкой на сопровождающие чертежи, на которых:

Фиг.1 изображает устройство для плазменного поджига для непосредственного поджига котла на пылевидном угле (продольный разрез) согласно изобретению;

Фиг.2 - горелку для пылевидного угля устройства для непосредственного плазменного поджига котла на пылевидном угле согласно изобретению;

Фиг.3 - составной катод устройства для непосредственного плазменного поджига котла на пылевидном угле согласно изобретению;

Фиг.4 - составной анод устройства для непосредственного плазменного поджига котла на пылевидном угле согласно изобретению;

Фиг.5 - схему устройства для непосредственного плазменного поджига котла на пылевидном угле согласно изобретению;

Фиг.6 - генератор плазмы устройства для плазменного поджига для непосредственного поджига котла на пылевидном угле согласно изобретению;

Фиг.7 - схему генератора плазмы согласно изобретению.

Подробное описание предпочтительных вариантов воплощения

Составной катод (фиг.3), используемый в устройстве для плазменного поджига, содержит головку 301 катода, уплотнительные гайки, электропроводную трубку 304, трубопровод 308 для входа воды, трубку 305 для входа воды, трубопровод 307 для выхода воды, колпачок 306 на конце катода и уплотнительную прокладку 310. Головка 301 катода приварена к уплотнительным гайкам из меди. Указанная трубка 304 соединена с гайками посредством резьбового соединения. Трубопровод 308 для входа воды вставлен в другой конец трубки 304 и соединен с ней посредством сварки или резьбовым соединением. Трубопровод 307 для выхода воды смонтирован посредством сварки в направлении, перпендикулярном трубке 304. Благодаря этому образуется система охлаждения катода, в которой на переднем конце катода смонтирована втулка 311 для пуска дуги. Пластина 302 катода изготовлена из сплава, а охлаждающее сопло 303 для охлаждения пластины соединено с трубопроводом 308 для входа воды посредством сварки и размещено в центре трубки 304. Сопло выполнено так, что оно сначала сходится и затем расходится.

В соответствии с предпочтительным конструктивным вариантом выполнения, втулка 311 для пуска дуги изготовлена из графитового стержня, который имеет высокую температуру плавления и высокую электропроводность. Указанная втулка 311 для пуска дуги закреплена на переднем конце головки 301 катода посредством резьбового соединения и заподлицо с пластиной 302 катода.

В соответствии с другим вариантом выполнения, пластина 302 катода изготовлена из сплава на основе KMnO, который имеет высокую теплопроводность и высокую электропроводность, причем пластина 302 катода соединена с головкой 301 катода посредством пайки и заподлицо со втулкой 311 для пуска дуги. Использование катода в виде пластины дает возможность самосжатия дуги в точке начала дуги.

Во время работы устройства для плазменного поджига, в котором использован указанный составной катод 602 (фиг.7), находящийся в контакте с анодом 603. На фиг.7 также показаны катушка 12 поджига дуги, изолирующий цилиндр 15 с выходом 14 для сжатого воздуха. К источнику 507 питания постоянного тока подводится питание, и устанавливается электрическая нагрузка. Когда катод 602 комбинированного типа медленно отодвигается от анода 603, сначала образуется электрическая дуга между анодом 603 и втулкой 311 для пуска дуги. Благодаря эффектам механического сжатия, магнитного сжатия и термического сжатия электрическая дуга легко переходит от втулки 311 для пуска дуги к пластине 302 катода. Вращающийся поток воздуха, поступающий из выхода 14 сжатого воздуха, становится плазмой под действием энергии электрической дуги. Эксперименты показывают, что угар анода в продолжение пуска дуги гораздо меньше, и срок службы анода продлевается.

Кроме того, поскольку сопло имеет конструкцию, которая сначала сходится и затем расходится, течение жидкости ускоряется во входной части сопла, так что эффективность теплообмена на катоде повышается, и срок службы катода увеличивается.

Устройство для непосредственного плазменного поджига котла на пылевидном угле согласно изобретению содержит генератор 102 (фиг.1) плазмы, горелку 101 для пылевидного угля и кронштейн 103 генератора плазмы.

Генератор 102 плазмы имеет составной анод 604, части которого соединены посредством фланцевого соединения, который размещен в камере 212 сгорания пылеугольной горелки первой ступени. Указанный генератор плазмы содержит составной анод 604 (фиг.6), составной катод 602, линейный двигатель 601, электромагнитную катушку 603 и катушку 605 для перемещения дуги, размещенную на корпусе составного анода 604. Составной анод 604 и катод 602 комбинированного типа расположены на одной оси. Составной анод 604 соединен с положительным полюсом источника 508 питания постоянного тока, а составной катод 602 соединен с отрицательным полюсом источника питания 508 постоянного тока. Линейный двигатель служит для приведения катода и анода в контакт друг с другом, а затем отведения их в стороны друг от друга для установления плазменной электрической дуги.

Составной анод 604 (фиг.4) выполнен в виде трубы со сдвоенным соплом, то есть составной анод сформирован путем сварки пары труб. Один конец составного анода приварен к соплу 404 анода, и другой конец приварен к основанию 406 анода. Корпус 405 анода изготовлен из материала с высокой теплопроводностью и высокой электропроводностью, а оксид этого материала также имеет электропроводность материала на основе KMnO. Сопло 404 анода может быть изготовлено из материала на основе меди или на основе KMnO.

Составной катод содержит головку 301 (фиг.3) катода, втулку 311 для пуска дуги, уплотнительные гайки, пластину 302 катода, охлаждающее сопло 303, электропроводную трубку 304, трубку 305 для входа воды, трубопровод 308 для входа воды, трубопровод 307 для выхода воды и колпачок 306 на конце катода. Пластина 302 катода имеет форму обратного конуса и изготовлена из сплава на основе KMnO. Охлаждающее сопло 303 имеет конструкцию, которая сначала сходится и затем расходится.

Горелка 101 (фиг.2) для пылевидного угля содержит сопло 201 горелки, камеру 202 сгорания четвертой ступени, камеру 204 сгорания третьей ступени, трубу 216 для входа в камеру сгорания второй ступени, трубу 217 для первичной пылевоздушной смеси, трубу 209 для входа вспомогательного воздуха, направляющую пластину 214 камеры сгорания первой ступени, направляющую пластину 219 камеры сгорания второй ступени и канал 220 для порошка для камеры сгорания третьей ступени. Поток смеси воздуха и пылевидного угля, поступающий через трубу 217 для первичной пылевоздушной смеси, разделяется посредством направляющей пластины 218 для регулирования концентрации порошка на три потока, которые соответственно входят в указанные камеры сгорания трех ступеней и сгорают в них. Вспомогательный воздух, поступающий через трубу 209 для входа вспомогательного воздуха, разделяется на три потока, которые соответственно добавляют кислород и охлаждают наружную стенку камеры сгорания 212 первой ступени, наружную стенку камеры сгорания 204 третьей ступени и внутреннюю и наружную стенки камеры сгорания 202 четвертой ступени.

Работа осуществляется следующим образом.

Когда к источнику питания 508 (фиг.5) постоянного тока подводится энергия, запускается линейный двигатель 507 и осуществляет движение вперед так, что катод 506 контактирует с анодом 504. При этом устанавливаются выходной ток и давление воздуха в трубе 505 для входа сжатого воздуха. Когда катод медленно отходит от анода, возникает электрическая дуга. Поскольку напряжение дуги является функцией расстояния между двумя электродами, расстояние должно быть определено в зависимости от типа катушки, так что могут быть определены мощность дуги и напряжение. Ионизированный воздух образует плазменный факел, и входит в камеру 212 сгорания первой ступени горелки на пылевидном угле, тем самым поджигая пылевидный уголь высокой концентрации, проходящий через трубу 215 для входа в камеру сгорания первой ступени.

В это же время пылевидный уголь, входящий по трубе 217 для первичной пылевоздушной смеси, разделяется посредством направляющей пластины для регулирования концентрации порошка на три потока, которые входят в корпус горелки. Первая часть - 20% пылевидного угля высокой концентрации входит в камеру сгорания первой ступени через трубу 215 для входа в камеру сгорания первой ступени и направляющую пластину камеры сгорания первой ступени и поджигается посредством плазменного факела. Второй поток - 60% пылевидного угля высокой концентрации входит в камеру сгорания второй ступени через трубу 216 для входа в камеру сгорания второй ступени и направляющую пластину камеры сгорания второй ступени. Третий поток - 20% пылевидного угля высокой концентрации входит в камеру сгорания третьей ступени через направляющую пластину для первичной пылевоздушной смеси и канал для порошка для камеры сгорания третьей ступени.

Вспомогательный воздух проходит через трубу для входа вспомогательного воздуха трубы для пылевоздушной смеси и входит в горелку двумя путями. По одному пути воздух проходит через верхний вход наружного цилиндра камеры сгорания первой ступени, чтобы охладить наружную стенку камеры сгорания первой ступени и добавить кислород для горения. По другому пути воздух проходит через канал для вспомогательного воздуха, чтобы охладить наружную стенку камеры сгорания третьей ступени, а затем разделяется на два потока, один из которых входит в камеру сгорания четвертой ступени и добавляет кислород для горения, другой проходит через канал для вспомогательного воздуха, чтобы охладить камеру сгорания четвертой ступени, а затем входит внутрь горелки.

Таким образом, когда по трубе для перемешивания высокотемпературной плазмы подается высокотемпературная плазма, как описано выше, первая часть, т.е. 20% пылевидного угля высокой концентрации, зажигается немедленно, причем это пламя затем зажигает вторую часть, т.е. 60% пылевидного угля, остальные 20% пылевидного угля проходят через канал для пылевидного угля камеры сгорания третьей ступени, смешиваются с указанным выше факелом и сгорают. Последняя часть потока пылевоздушной смеси предназначена для охлаждения камеры сгорания второй ступени.

Эксперименты показывают, что когда количество пылевидного угля в камерах сгорания составляет 500 кг/ч, форма пламени имеет ⊘700×3000 мм. Пламя поджигает пылевидный уголь в камере 206 сгорания второй ступени и в камере 204 сгорания третьей ступени. Когда общее количество пылевидного угля составляет 5000 кг/ч, температура пламени больше 1200°С, скорость истечения из сопла составляет 45-55 м/с, и форма пламени имеет ⊘1000×7000 мм. Когда используются четыре устройства для плазменного поджига в горелке с прямым потоком, может поддерживаться горение по касательной, поэтому могут быть осуществлены поджиг и устойчивое горение.

1. Устройство для непосредственного поджига котла на пылевидном угле, содержащее генератор (102) плазмы, горелку (101) на пылевидном угле, кронштейн (103) плазмогенератора и источник (508) питания постоянного тока, отличающееся тем, что генератор плазмы содержит составной катод (602), составной анод (604), электромагнитную катушку (603), катушку (605) для перемещения дуги и линейный двигатель (601), при этом горелка (101) на пылевидном угле содержит трубу (207) для пылевоздушной смеси, трубу (215) для входа в камеру сгорания первой ступени, трубу (216) для входа в камеру сгорания второй ступени, входную трубу (217) для первичной пылевоздушной смеси, камеру (212) сгорания первой ступени, камеру (206) сгорания второй ступени, камеру (204) сгорания третьей ступени, камеру (202) сгорания четвертой ступени, сопло (201) горелки и направляющую пластину (218) для регулирования концентрации порошка.

2. Устройство по п.1, отличающееся тем, что составной катод (602) содержит головку (301) катода, втулку (311) для пуска дуги, уплотнительные гайки, пластину (302) катода, охлаждающее сопло (303), электропроводную трубку (304), трубопровод (308) для подачи воды, трубку (305) для входа воды, трубопровод (307) для выхода воды и колпачок (306) на конце катода.

3. Устройство по любому из п.1 или 2, отличающееся тем, что пластина (302) катода имеет форму цилиндр плюс конус, прикреплена к головке (301) катода посредством сварки и изготовлена из материала на основе Ag, который обладает высокой электропроводностью и высокой теплопроводностью и оксид которого также обладает проводимостью, причем сопло (303) имеет форму, которая сначала сходится и затем расходится.

4. Устройство по п.1, отличающееся тем, что составной анод (604) генератора (102) плазмы содержит уплотнительное кольцо (401), корпус (402) анода, полость (403) для охлаждающей воды, сопло (404) анода, тело (405) анода, основание (406) анода, трубопровод (407) для подачи воды и трубопровод (408) для выхода воды, причем составной анод (604) образован путем сварки двух труб с соплами, один конец составного анода приварен к соплу (404) анода, и другой конец приварен к основанию анода.

5. Устройство по любому из п.1 или 4, отличающееся тем, что корпус (405) анода изготовлен из сплава на основе Ag, и сопло (404) анода изготовлено из сплава на основе меди или Ag.

6. Устройство по любому из пп.1, 4 или 5, отличающееся тем, что составной анод (604) окружен катушкой (605) для перемещения дуги.

7. Устройство по п.1, отличающееся тем, что горелка (101) на пылевидном угле содержит сопло (201) горелки, камеру (212) сгорания первой ступени, камеру (206) сгорания второй ступени, камеру (204) сгорания третьей ступени, камеру (202) сгорания четвертой ступени, трубу (207) для пылевоздушной смеси, входную трубу (217) для первичной пылевоздушной смеси, трубу (209) для входа вспомогательного воздуха, направляющую пластину (210) для первичной пылевоздушной смеси, направляющую пластину (218) для регулирования концентрации порошка, причем эти элементы скреплены посредством сварки с соединительной плитой или посредством соединения болтами, при этом поток пылевидного угля, входящий через трубу (217) для первичной пылевоздушной смеси, разделяется на три потока для прохождения через направляющую пластину (214) камеры сгорания первой ступени, направляющую пластину (219) камеры сгорания второй ступени и направляющую пластину (210) для первичной пылевоздушной смеси соответственно в определенную камеру (212) сгорания первой ступени, камеру (206) сгорания второй ступени и камеру (204) сгорания третьей ступени, причем вспомогательный воздух, поступающий из трубы (209) для входа вспомогательного воздуха, разделяется на три потока, которые соответственно охлаждают наружный цилиндр (208) камеры сгорания первой ступени, камеру (204) сгорания третьей ступени и наружную стенку камеры (202) сгорания четвертой ступени, часть вспомогательного воздуха поступает в пространство между внутренней стенкой камеры (202) сгорания четвертой ступени и наружной стенкой камеры (212) сгорания первой ступени, чтобы добавлять кислород для облегчения горения, причем направление потока пылевидного угля высокой концентрации в камере (212) сгорания первой ступени изменяется посредством направляющей пластины (214) камеры сгорания первой ступени из радиального в осевой поток, а направляющая пластина (218) для регулирования концентрации порошка предназначена для регулирования концентрации пылевидного угля до величины, облегчающей зажигание.

8. Составной катод, используемый в устройстве для плазменного поджига, содержащий головку (301) катода, уплотнительную/ые гайку/и, электропроводную трубку (304), трубопровод (308) для входа воды, трубку (305) для входа воды, трубопровод (307) для выхода воды, колпачок (306) на конце катода и уплотнительную прокладку (310), причем головка (301) катода приварена к уплотнительной/ым гайке/ам из меди, электропроводная трубка (304) соединена с гайкой/ами посредством резьбового соединения, трубопровод (308) для входа воды вставлен в другой конец электропроводной трубки (304) и соединен с ней посредством сварки или резьбового соединения, трубопровод (307) для выхода воды закреплен посредством сварки перпендикулярно электропроводной трубке (304), посредством чего образуется система охлаждения катода, отличающийся тем, что на переднем конце катода закреплена втулка (311) для пуска дуги, пластина (302) катода изготовлена из сплава, охлаждающее сопло (303) для охлаждения пластины катода соединено с трубопроводом (308) для входа воды посредством сварки и размещено в центре электропроводной трубки (304), причем сопло имеет форму, которая сначала сходится и затем расходится.

9. Катод по п.8, отличающийся тем, что втулка (311) для пуска дуги изготовлена из графитового стержня, который имеет высокую температуру плавления и высокую электропроводность, закреплена на переднем конце головки (301) катода посредством резьбового соединения заподлицо с пластиной (302) катода.

10. Катод по любому из п.8 или 9, отличающийся тем, что пластина (302) катода изготовлена из сплава на основе Ag, который имеет высокую теплопроводность и высокую электропроводность, и соединена с головкой (301) катода посредством пайки, и ее поверхность выполнена заподлицо со втулкой (311) для пуска дуги.

Приоритет по пунктам:

06.02.2002 по пп.1-7;

27.02.2001 по пп.8-10.



 

Похожие патенты:

Изобретение относится к плазменной технике, а именно к газоразрядным устройствам с жидкими неметаллическими электродами, и может быть использовано в качестве анода или катода.

Изобретение относится к способам управления электрической дугой при электродуговой обработке материалов и может быть использовано в различных отраслях машиностроения.

Изобретение относится к электротермической обработке металлов, в частности к инструменту для электротермической обработки металлов, и может быть использовано в различных отраслях машиностроения.

Изобретение относится к устройствам импульсных излучателей-генераторов разовых или многоразовых импульсов нейтронного и рентгеновского излучения. .

Изобретение относится к сильноточной импульсной технике и может быть использовано в электрофизических установках для получения мощных электромагнитных импульсов с длительностью импульса в несколько десятков наносекунд, рентгеновского излучения и т.д.

Изобретение относится к плазменной эмиссионной электронике, в частности к конструкции источника электронов с плазменным эмиттером, генерирующего радиально сходящиеся ленточные пучки, и может быть использовано в электронно-ионной вакуумной технологии термообработки наружных поверхностей деталей и изделий цилиндрической формы ускоренным пучком электронов.

Изобретение относится к методам управления электрической дугой и может быть использовано в процессах электродуговой обработки материалов. .

Изобретение относится к плазменной технике, а именно к электроразрядным устройствам с жидкими неметаллическими электродами, и может быть применено в плазмохимии, а также в других отраслях производства, в частности для плазменного пиролиза пластмассовых и резиновых отходов.

Изобретение относится к плазменной технике, а именно к электроразрядным устройствам с жидкими неметаллическими электродами, и может быть применено в плазмохимии, а также в других отраслях производства, в частности для плазменного пиролиза пластмассовых и резиновых отходов.

Изобретение относится к искровым разрядникам, в частности к устройствам для воспламенения горючих смесей в двигателях внутреннего сгорания. .

Изобретение относится к энергетике и может быть использовано для розжига и стабилизации горения пылеугольных горелок. .

Изобретение относится к энергетике и может быть использовано для розжига и стабилизации горения пылеугольных горелок. .

Изобретение относится к области теплоэнергетики. .

Изобретение относится к устройствам для розжига и стабилизации горения топлива в котельных установках, топочных устройствах. .

Изобретение относится к энергетике и может быть использовано для растопки пылеугольных котлов и стабилизации горения (подсветки) факела в них, а также в других процессах, связанных с воспламенением мелкодисперсного твердого топлива и в других нагревательных установках, работающих на таком топливе.

Изобретение относится к энергетике и может быть использовано для растопки пылеугольных котлов и стабилизации горения (подсветки) факела в них
Наверх