Способ приготовления неорганического материала для радиационной защиты

Изобретение относится к области приготовления защитных материалов. Сущность изобретения: способ приготовления неорганического материала для радиационной защиты включает загрузку связующего, наполнителя и пластификатора в смеситель принудительного действия и перемешивание компонентов. При этом в качестве связующего используют портландцемент, а в качестве наполнителя - тонкодисперсный железосодержащий магнетитовый концентрат с размером частиц 20-40 мкм, молотый хризотиловый асбест, строительную известь, вводят чугунную дробь и воду. Затем осуществляют перемешивание смеси до однородного состояния, производят укладку в формы для твердения, термовлажностную обработку в пропарочной камере в течение 7-8 часов. Далее осуществляют сушку в сушильной камере при температуре 100-110°С в течение 3-5 часов. Для приготовления материала используют следующее соотношение компонентов, мас.%: портландцемент 13-17; магнетитовый концентрат 10-14; хризотиловый асбест 0,55-0,75; известь 0,5-0,7; пластификатор 0,2-0,3; чугунная дробь 65-73; вода 2,3-2,7. Преимущество изобретения заключается в повышении радиационной защиты. 2 табл.

 

Изобретение относится к материалам для защиты от ионизирующих излучений в атомной, радиохимической промышленности, военно-морском флоте обслуживающего персонала и окружающей среды.

Известен способ приготовления тяжелого бетона, заключающийся в смешении цемента, обычного песка, гематита и воды (см. Бродер Д.Л. и др. Бетон в защите ядерных установок. М.: Атомиздат, 1973, с.21).

Недостатком известного способа является большая разность объемных масс компонентов бетона, особенно тяжелого заполнителя и цемента, что приводит к неоднородности материала, и как следствие, пониженным радиационно-защитным характеристикам. Кроме того, материал не обладает оптимальным зерновым составом, от которого зависят удобоукладываемость и защитные свойства материала.

Наиболее близким, принятым за прототип, является способ приготовления композиционного материала для защиты от радиации, изложенный в патенте RU 2193247, опубл. 20.11.2002, Бюл. №32, кл. G 21 F 1/01. В известном способе в барабан бетономешалки последовательно загружают расчетное количество жезезосодержащего гематитового концентрата, портландцемента, воды с пластификатором и стальные фибры. Общее время перемешивания 20 мин.

Недостатком известного способа является то, что получаемый продукт не обладает высокими защитными характеристиками по отношению к нейтронному излучению.

Техническим результатом заявленного изобретения является повышение радиационной защиты от нейтронного и гамма-излучения.

Указанный технический результат достигается за счет того, что заявленный способ приготовления неорганического материала для радиационной защиты включает загрузку связующего, наполнителя и пластификатора в смеситель принудительного действия и перемешивание компонентов, при этом в качестве связующего используют портландцемент, а в качестве наполнителя - тонкодисперсный железосодержащий магнетитовый концентрат с размером частиц 20-40 мкм, молотый хризотиловый асбест и строительную известь. Затем вводят чугунную дробь и воду, осуществляют перемешивание смеси до однородного состояния, производят укладку в формы для твердения, термовлажностную обработку в пропарочной камере в течение 7-8 часов, сушку в сушильной камере при температуре 100-110°С в течение 3-5 часов при следующем соотношении компонентов, мас.%:

Портландцемент13-17
Магнетитовый концентрат10-14
Хризотиловый асбест0,55-0,75
Известь0,5-0,7
Пластификатор0,2-0,3
Чугунная дробь65-73
Вода2,3-2,7

Связующим компонентом неорганического материала является портландцемент марки 500-ПЦ 500-ДО (ГОСТ 10178-85).

В качестве железосодержащего сырья используют высокодисперсный магнетитовый концентрат Лебединского ГОКа с насыпной плотностью 3000 кг/м3 фракции 20-40 мкм (ТУ 14-9-288-84).

Использование данного железосодержащего концентрата в качестве наполнителя при производстве неорганического материала для радиационной защиты обусловлено высоким содержанием железа (70-72%).

Использование в качестве связующего хризотилового асбеста и извести обусловлено содержанием в них молекул связанной воды, что играет определяющую роль в защите от нейтронного излучения. Кроме того, известь обладает пластифицирующими, а хризотиловый асбест - армирующими свойствами, что повышает прочность получаемого композиционного материала.

Использование чугунной дроби (ГОСТ 11964-81) позволяет получать материал высокой плотности (4000-4200 кг/м3), обладающий высокими физико-механическими и радиационно-защитными характеристиками.

Количественное содержание компонентов в предлагаемом и известном материале приведены в табл.1.

Таблица 1
Компонент Содержание, мас.%
Предлагаемый материалИзвестный материал
Портландцемент131415161722
Тонкодисперсный железосодержащий наполнитель101112131456
Известь0,500,550,600,650,70нет
Хризотиловый асбест0,550,60,650,70,75нет
Пластификатор0,200,230,250,270,302,5
Чугунная дробь6567697173нет
Вода2,32,42,52,62,79,71

Пример. 515 г железосодержащего магнетитового концентрата дисперсностью 40 мкм тщательно перемешивают с 570 г портландцемента, 28 г извести, 28,5 г молотого хризотилового асбеста и 10 г пластификатора. Далее в полученную смесь порциями вводят 2850 г чугунной дроби и при постоянном перемешивании затворяют водой в объеме 100 мл. Перемешивание проводят в течение 20 минут в смесителе циклического режима принудительного действия. Полученную смесь закладывают в форму 10 см × 10 см × 10 см, уплотняют на стандартном вибростоле в течение 5 минут и оставляют для естественного твердения в течение 24 часов. Далее образец материала подвергают термовлажностной обработке в пропарочной камере ямного или камерного типа в течение 8 часов. Далее образец извлекается из формы и проходит стадию сушки в сушильной камере при температуре 110°С до постоянной массы в течение 3 часов. Готовый образец материала для радиационной защиты имеет следующие характеристики: объемную массу 4135 кг/см, прочность на сжатие 520 кг/см2, линейный коэффициент ослабления ионизирующего излучения (источник Со60 с энергией Е=1173 кэВ) 0,23, линейный коэффициент ослабления ионизирующего излучения (источник Cs137 с энергией Е=661 кэВ) 0,41, длина релаксации быстрых нейтронов (Е>2 МэВ) 8,8 см, длина релаксации мощности дозы нейтронов 10,0 см.

Для получения сравнительных данных параллельно проводились аналогичные эксперименты на других составах материала.

Результаты радиационно-защитных и физико-механических испытаний представлены в табл.2.

Таблица 2
КомпонентПредлагаемый материал
12345
Плотность, кг/см339004000410041504200
Предел прочности при сжатии, кг/см2450470520440390
Линейный коэффициент ослабления (μ) гамма излучения, см-1:
Е=1173 кэВ0,180,200,230,210,19
Е=661 кэВ0,440,430,410,420,43
Длина релаксации быстрых нейтронов (Е>2 МэВ), см10,09,38,88,78,6
Длина релаксации мощности дозы нейтронов, см1412109,59,0
Марка по морозостойкости200200200200200
Теплостойкость, °С600650700670550
Радиационная стойкость, баллы22222

Измерение радиационно-защитных свойств материалов по гамма-излучению осуществлено гамма-спектральным методом на базе многоканального анализатора с программным обеспечением "Прогресс" в аккредитованной в Госстандарте РФ лаборатории радиационного контроля "Спектр". Измерение радиационно-защитных свойств материалов по нейтронному излучению осуществлялось с помощью сцинтилляционного счетчика быстрых нейтронов на основе кристалла ZnS(Ag). Оценка физико-механических характеристик проводилась в государственном научном центре по сертификации строительных материалов и конструкций, аккредитованном в Госстандарте РФ "БГТУ-сертификация".

Анализируя данные, приведенные в табл.2, можно заключить, что предлагаемый неорганический материал является эффективным защитным экраном от гамма- и нейтронного излучения и позволяет повысить радиационно-защитные характеристики на 30-50% по сравнению с известным материалом.

Способ приготовления неорганического материала для радиационной защиты, включающий загрузку связующего, наполнителя и пластификатора в смеситель принудительного действия и перемешивание компонентов, отличающийся тем, что в качестве связующего используют портландцемент, а в качестве наполнителя - тонкодисперсный железосодержащий магнетитовый концентрат с размером частиц 20-40 мкм, молотый хризотиловый асбест, строительную известь, вводят чугунную дробь и воду, осуществляют перемешивание смеси до однородного состояния, производят укладку в формы для твердения, термовлажностную обработку в пропарочной камере в течение 7-8 ч, сушку в сушильной камере при температуре 100-110°С в течение 3-5 ч при следующем соотношении компонентов, мас.%: портландцемент 13-17; магнетитовый концентрат 10-14; хризотиловый асбест 0,55-0,75; известь 0,5-0,7; пластификатор 0,2-0,3; чугунная дробь 65-73; вода 2,3-2,7.



 

Похожие патенты:
Изобретение относится к составам серных вяжущих и может быть использовано для изготовления серного бетона, предназначенного для защиты от радиации, а также для заливки швов футеровки, аппаратуры и строительных конструкций, эксплуатирующихся в условиях воздействия ионизирующих излучений.
Изобретение относится к составам серных вяжущих и может быть использовано для изготовления серного бетона, предназначенного для защиты от нейтронного излучения, а также для заливки швов футеровки, аппаратуры и строительных конструкций, эксплуатирующихся в условиях воздействия ионизирующих излучений.

Изобретение относится к составам серных вяжущих и может быть использовано для изготовления серного бетона, предназначенного для защиты от радиации, а также для заливки швов футеровки, аппаратуры и строительных конструкций, эксплуатирующихся в условиях воздействия ионизирующих излучений.

Изобретение относится к составам серных вяжущих и может быть использовано для изготовления серного бетона, предназначенного для защиты от радиации, а также для заливки швов футеровки, аппаратуры и строительных конструкций, эксплуатирующихся в условиях воздействия ионизирующих излучений.

Изобретение относится к составам радиационно-защитных бетонов, применяемых при возведении сооружений, предназначенных для защиты от радиоактивного воздействия ядерных установок, атомных электростанций, предприятий по выработке изотопов и других специальных сооружений, в которых используются источники радиоактивного излучения.

Изобретение относится к материаловедению, в частности, к сырьевым смесям для приготовления радиационно-защитного, особопрочного и тяжелого бетона преимущественно для контейнера для транспортировки или хранения отработавшего ядерного топлива (ОЯТ).

Изобретение относится к защите от ионизирующего излучения, в частности для радиационной безопасности обслуживающего персонала и окружающей среды. .

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий на основе гипсовых связующих, предназначенных для защиты от ионизирующих излучений.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления строительных изделий, предназначенных для защиты от ионизирующих излучений.

Изобретение относится к строительным материалам, предназначенным для защиты от ионизирующих излучений. .
Изобретение относится к строительным материалам, изготовленным на основе глетглицеринового цемента, и может быть использовано для ремонта и изготовления строительных деталей и изделий, предназначенных для защиты от ионизирующих излучений
Изобретение относится к строительным материалам и может быть использовано для изготовления строительных деталей и изделий, предназначенных для защиты от ионизирующих излучений
Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления строительных деталей, изделий и конструкций, предназначенных для капсулирования радиоактивных и высокотоксичных отходов

Изобретение относится к средствам защиты от радиоактивного излучения и может быть использовано в атомной промышленности и радиационной технике, в частности при изготовлении контейнеров для хранения и/или транспортировки радиоактивных материалов
Изобретение относится к составу цементного бетона для изготовления строительных конструкций, обеспечивающих низкий естественный радиационный фон внутри помещений
Изобретение относится к области защиты зданий и сооружений от проникновения радона в помещения и может быть использовано при строительстве на радоноопасных территориях
Изобретение относится к композиции для изготовления особо прочного и тяжелого бетона для защиты от радиационного излучения, который может найти применение при изготовлении контейнеров с отработавшим ядерным топливом или радиоактивными отходами
Изобретение относится к отделочным строительным материалам, предназначенным для защиты технических средств и человека в медицинских, производственных, научных, административных и жилых помещениях от воздействия ионизирующих излучений
Изобретение относится к области строительных материалов и может быть использовано при производстве ячеистого неавтоклавного газобетона, а также для изготовления штучных изделий и монолитов
Изобретение относится к получению композиционного материала на основе шунгита и гипса, который может быть использован в производстве экологически чистых строительных изделий - облицовочных плиток, стеновые блоков и панелей, для медицинских целей и в качестве средства для защиты от излучений
Наверх