Устройство для управления приводом робота

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами робота. Технический результат заключается в повышении динамической точности привода при наличии пяти степеней подвижности. За счет введения в состав привода четвертого косинусного функционального преобразователя, восьмого и девятого блоков умножения и третьего датчика ускорения с соответствующими связями обеспечивается полная инвариантность привода к эффектам взаимовлияния между степенями подвижности и моментам трения. 2 ил.

 

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами робота.

Известно устройство для управления приводом робота, содержащее последовательно соединенные первый и второй сумматоры, первый блок умножения, третий сумматор, усилитель и двигатель, связанный с первым датчиком скорости непосредственно и через редуктор - с первым датчиком положения, выход которого подключен к первому входу первого сумматора, соединенного вторым входом с входом устройства, последовательно подключенные релейный элемент и четвертый сумматор, второй вход которого подключен к входу релейного элемента, второму входу второго сумматора, и выходу первого датчика скорости, выход - к второму входу третьего сумматора, последовательно соединенные первый задатчик сигнала и пятый сумматор, а также второй датчик скорости, датчик массы, второй задатчик сигнала, квадратор, шестой сумматор и с второго по пятый блоки умножения, первый датчик ускорения, а также первый косинусный и второй синусный функциональные преобразователи, вход каждого из которых соединен с выходом первого датчика положения, выход датчика массы подключен к второму входу первого блока умножения, первому входу шестого сумматора и второму входу пятого сумматора, соединенного выходом с первыми входами второго и третьего блоков умножения, второй вход каждого из которых подключен соответственно к выходам первого и второго функционального преобразователя, а их выходы - соответственно к второму входу шестого сумматора и первому входу четвертого блока умножения, соединенного вторым входом через квадратор с выходом второго датчика скорости, а выходом - с третьим входом четвертого сумматора, четвертый вход которого подключен к выходу пятого блока умножения, - соединенного первым входом с выходом первого датчика ускорения, а вторым входом - с выходом шестого сумматора, третий вход которого подключен к выходу второго задатчика сигнала, а выход второго сумматора соединен с третьим входом третьего сумматора, а также последовательно соединенные второй датчик положения, седьмой сумматор, второй вход которого подключен к выходу первого датчика положения, третий синусный функциональный преобразователь и шестой блок умножения, второй вход которого подключен к выходу пятого сумматора (см. патент РФ №2028930, БИ №5, 1995 г.).

Недостатком данного устройства является то, что оно предназначено для конкретного привода с другой кинематической схемой. Для приводов других степеней подвижности других роботов (с другой кинематикой) это устройство не будет обеспечивать требуемую динамическую точность работы.

Известно также устройство для управления приводом робота, содержащее последовательно соединенные первый сумматор, второй сумматор, первый блок умножения, третий сумматор, усилитель и двигатель, связанный с первым датчиком скорости непосредственно и через редуктор с первым датчиком положения, выход которого подключен к первому входу первого сумматора, соединенного вторым входом с входом устройства, последовательно подключенные релейный элемент и четвертый сумматор, второй вход которого подключен к входу релейного элемента, второму входу второго сумматора и выходу первого датчика скорости, выход - к второму входу третьего сумматора, последовательно соединенные первый задатчик сигнала и пятый сумматор, а также второй датчик скорости, датчик массы, второй задатчик сигнала, квадратор, шестой сумматор и с второго по пятый блоки умножения, первый датчик ускорения, а также первый и второй функциональные преобразователи, вход каждого из которых соединен с выходом первого датчика положения, выход датчика массы подключен к второму входу первого блока умножения, первому входу шестого сумматора и второму входу пятого сумматора, соединенного выходом с первыми входами второго и третьего блоков умножения, второй вход каждого из которых подключен соответственно к выходу первого и второго функционального преобразователя, а их выходы соответственно - ко второму входу шестого сумматора и первому входу четвертого блока умножения, соединенного вторым входом через квадратор с выходом второго датчика скорости, а выходом - с третьим входом четвертого сумматора, четвертый вход которого подключен к выходу пятого блока умножения, соединенного первым входом с выходом датчика ускорения, а вторым входом - с выходом шестого сумматора, третий вход которого подключен к выходу второго задатчика сигнала, а выход сумматора соединен с третьим входом третьего сумматора, второй датчик положения, седьмой сумматор, второй вход которого подключен к выходу первого датчика положения, третий функциональный преобразователь, шестой блок умножения, второй вход которого подключен к выходу пятого сумматора, и седьмой блок умножения, второй вход которого подключен к выходу второго датчика ускорения, а его выход - к пятому входу четвертого сумматора (см. патент РФ №2193480, БИ №33, 2002 г.).

Данное устройство по своей технической сущности является наиболее близким к изобретению.

Недостатком этого устройства является то, что в нем не учитывается еще одна линейная степень подвижности робота, который рассматривается в данной заявке, и поэтому с помощью этого устройства не обеспечивается компенсация всех возникающих моментных воздействий на рассматриваемый привод нового робота. Поэтому устройство-прототип не может быть использовано для качественного управления приводами робота с пятью степенями подвижности.

Технической задачей, на решение которой направлено заявляемое техническое решение, является обеспечение полной инвариантности динамических свойств электропривода третьей степени подвижности рассматриваемого робота к непрерывным и быстрым изменениям его динамических моментных нагрузочных характеристик при одновременном движении этого робота по всем пяти рассматриваемым степеням подвижности и, тем самым, повышение его динамической точности управления.

Технический результат, который может быть получен при реализации заявляемого технического решения, выражается в получении дополнительного сигнала управления, подаваемого на вход привода, который обеспечивает получение дополнительного моментного воздействия, компенсирующего вредное моментное воздействие со стороны остальных степеней подвижности на качественные показатели работы рассматриваемого привода.

Это достигается тем, что в устройство для управления приводом робота, содержащее последовательно соединенные первый сумматор, второй сумматор, первый блок умножения, третий сумматор, усилитель и двигатель, связанный с первым датчиком скорости непосредственно и через редуктор с первым датчиком положения, выход которого подключен к первому входу первого сумматора, соединенного вторым входом с входом устройства, последовательно подключенные релейный элемент и четвертый сумматор, второй вход которого подключен к входу релейного элемента, второму входу второго сумматора и выходу первого датчика скорости, выход - к второму входу третьего сумматора, последовательно соединенные первый задатчик сигнала и пятый сумматор, а также второй датчик скорости, датчик массы, второй задатчик сигнала, квадратор, шестой сумматор и с второго по пятый блоки умножения, первый датчик ускорения, а также первый косинусный и второй синусный функциональные преобразователи, вход каждого из которых соединен с выходом первого датчика положения, выход датчика массы подключен к второму входу первого блока умножения, первому входу шестого сумматора и второму входу пятого сумматора, соединенного выходом с первыми входами второго и третьего блоков умножения, второй вход каждого из которых подключен, соответственно, к выходам первого и второго функциональных преобразователей, а их выходы, соответственно - ко второму входу шестого сумматора и первому входу четвертого блока умножения, соединенного вторым входом через квадратор с выходом второго датчика скорости, а выходом - с третьим входом четвертого сумматора, четвертый вход которого подключен к выходу пятого блока умножения, соединенного первым входом с выходом первого датчика ускорения, а вторым входом - с выходом шестого сумматора, третий вход которого подключен к выходу второго задатчика сигнала, а выход второго сумматора соединен с третьим входом третьего сумматора, последовательно соединенные второй датчик положения, седьмой сумматор, второй вход которого подключен к выходу первого датчика положения, третий синусный функциональный преобразователь, шестой блок умножения, второй вход которого подключен к выходу пятого сумматора, и седьмой блок умножения, второй вход которого подключен к выходу второго датчика ускорения, а его выход - к пятому входу четвертого сумматора, дополнительно вводятся последовательно соединенные четвертый косинусный функциональный преобразователь, подключенный входом к выходу седьмого сумматора, восьмой блок умножения, второй вход которого соединен с выходом пятого сумматора, и девятый блок умножения, второй вход которого соединен с выходом третьего датчика ускорения, а его выход - с шестым входом четвертого сумматора.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».

При этом заявленная совокупность признаков отличительной части формулы изобретения обеспечивает высокую точность и устойчивость работы привода робота в условиях существенного изменения параметров нагрузки рассматриваемого привода.

На фиг.1 представлена блок-схема предлагаемого устройства для управления, приводом робота, а на фиг.2 - кинематическая схема исполнительного органа этого робота.

Устройство для управления приводом робота содержит последовательно соединенные первый сумматор 1, второй сумматор 2, первый блок 3 умножения, третий сумматор 4, усилитель 5 и двигатель 6, связанный с первым датчиком 7 скорости непосредственно и через редуктор 8 с первым датчиком 9 положения, выход которого подключен к первому входу первого сумматора 1, соединенного вторым входом с входом устройства, последовательно подключенные релейный элемент 10 и четвертый сумматор 11, второй вход которого подключен к входу релейного элемента 10, второму входу второго сумматора 2 и выходу первого датчика 7 скорости, выход - к второму входу третьего сумматора 4, последовательно соединенные первый задатчик 12 сигнала и пятый сумматор 13, а также второй датчик 14 скорости, датчик 15 массы, второй задатчик 16 сигнала, квадратор 17, шестой сумматор 18 и с второго по пятый (19, 20, 21, 22) блоки умножения, первый датчик 23 ускорения, а также первый 24 косинусный и второй 25 синусный функциональные преобразователи, вход каждого из которых соединен с выходом первого датчика 9 положения, выход датчика 15 массы подключен к второму входу первого блока 3 умножения, первому входу шестого 18 сумматора и второму входу пятого сумматора 13, соединенного выходом с первыми входами второго 19 и третьего 20 блоков умножения, второй вход каждого из которых подключен, соответственно, к выходам первого 24 и второго 25 функциональных преобразователей, а их выходы, соответственно - ко второму входу шестого сумматора 18 и первому входу четвертого блока 21 умножения, соединенного вторым входом через квадратор 17 с выходом второго датчика 14 скорости, а выходом - с третьим входом четвертого сумматора 11, четвертый вход которого подключен к выходу пятого блока 22 умножения, соединенного первым входом с выходом первого датчика 23 ускорения, а вторым входом - с выходом шестого сумматора 18, третий вход которого подключен к выходу второго задатчика 16 сигнала, а выход второго сумматора 2 соединен с третьим входом третьего сумматора 4, последовательно соединенные второй датчик 26 положения, седьмой сумматор 27, второй вход которого подключен к выходу первого датчика 9 положения, третий синусный функциональный преобразователь 28, шестой блок 29 умножения, второй вход которого подключен к выходу пятого сумматора 13, и седьмой блок 30 умножения, второй вход которого подключен к выходу второго датчика 31 ускорения, а его выход - к пятому входу четвертого сумматора 11, последовательно соединенные четвертый косинусный функциональный преобразователь 32, подключенный вводом к выходу седьмого сумматора 27, восьмой блок 33 умножения, второй вход которого соединен с выходом пятого сумматора 13, и девятый блок 34 умножения, второй вход которого соединен с выходом третьего датчика 35 ускорения, а его выход - с шестым входом четвертого сумматора 11, объект управления 36.

На чертежах приведены следующие обозначения: αвх - сигнал желаемого положения третьей степени подвижности робота; q1,q2,q3,q4,q5 - соответствующие обобщенные координаты исполнительного органа робота; - скорость изменения второй обобщенной координаты; , - ускорения соответствующих обобщенных координат; ε=αвх-q3 - ошибка привода (величина рассогласования); m1,m2,m3,mг - соответственно массы первого, второго, третьего звеньев исполнительного органа робота и захваченного груза; - расстояния от осей вращения соответствующих звеньев до их центров масс; l2, l3 - длины соответствующих звеньев; - скорость вращения ротора двигателя; U*, U - соответственно усиливаемый сигнал и сигнал управления двигателем 5.

Устройство работает следующим образом. Сигнал ошибки ε с сумматора 1 после коррекции в блоках 2, 3, 4, усиливаясь, поступает на вход электродвигателя 6, приводя его вал во вращательное движение с направлением и скоростью (ускорением), зависящими от величины поступающего сигнала U, моментов трения и внешнего моментного воздействия Мв. Рассматриваемый электропривод третьей степени подвижности робота (координата q3) при работе с различными грузами, а также за счет взаимодействия степеней подвижности исполнительного органа обладает переменными моментными характеристиками, которые могут меняться в широких пределах. Это снижает качественные показатели электропривода и даже приводит к потере устойчивости его работы. В результате возникает задача, связанная с обеспечением инвариантности динамических свойств электропривода к непрерывным и быстрым изменениям его моментных нагрузочных характеристик, что позволяет обеспечить стабильность заданного качества системы управления.

Конструкция робота (см. фиг.2) позволяет осуществлять горизонтальное (координаты q1 и q4) и вертикальное (координата q5) прямолинейные перемещения груза и два вращательных движения в горизонтальной плоскости (координаты q2 и q3).

Моментные характеристики привода, управляющего координатой q зависят от изменения координат q2,q3, mг. В связи с этим для качественного управления координатой q3 необходимо точно компенсировать отрицательное влияние изменения координат q2,q3, также переменной массы груза mг на динамические свойства рассматриваемого привода поворота (координата q3).

На основе уравнения Лагранжа 2-го рода можно записать, что моментное воздействие на выходной вал привода, управляющего координатой q3, при движении робота (см. фиг.2) с грузом имеет вид

где J2, J3 - соответственно моменты инерции второго и третьего звеньев относительно их центров масс.

С учетом соотношения (1), а также уравнений механической

электрической цепей электродвигателя постоянного тока с постоянными магнитами или независимого возбуждения, рассматриваемый привод, управляющий координатой q3, можно описать следующим дифференциальным уравнением

где R - активное сопротивление якорной цепи двигателя; J - момент инерции якоря двигателя и вращающихся частей редуктора, приведенных к валу двигателя; Км - коэффициент крутящего момента; Кω - коэффициент противоЭДС; Кв - коэффициент вязкого трения; ip - передаточное отношение редуктора; Мстр - момент сухого трения; Ку - коэффициент усиления усилителя 5; i - ток якоря; - ускорение вращения вала двигателя третьей степени подвижности.

Из (2) видно, что параметры этого уравнения, а следовательно, и параметры привода, управляющего координатой q3, являются существенно переменными, зависящими от величин q2,q3, mг.

Полагается, что первый положительный вход сумматора 2 (со стороны сумматора 1) единичный, а его второй отрицательный вход имеет коэффициент усиления Kω/Kу. Первый, третий, четвертый положительные входы сумматора 11 (соответственно со стороны релейного элемента 10, блока 21 умножения и блока 22 умножения) единичные, его второй положительный вход (со стороны датчика 7 скорости) имеет коэффициент усиления (KмKω/R+Kв), а его пятый и шестой положительные вход (со стороны блоков умножения 30 и 33) - коэффициенты усиления l/l2. Причем выходной сигнал релейного элемента 10 с нулевой нейтральной точкой имеет вид

где МТ - величина момента сухого трения при движении.

Первый положительный вход сумматора 4 (со стороны блока 3 умножения) имеет коэффициент усиления второй положительный (со стороны сумматора 11) - коэффициент усиления R/(KмKy), а третий положительный (со стороны сумматора 2) - коэффициент усиления где Jн - номинальное (желаемое) значение приведенного момента инерции, обеспечивающее рассматриваемому приводу робота заданные динамические свойства и показатели качества.

Второй положительный вход сумматора 13 (со стороны датчика 15) имеет коэффициент усиления l2l3/ip, а его первый положительный вход (со стороны задатчика 12) - единичный коэффициент усиления. Сигнал с выхода задатчика 12 равен а с выхода задатчика

Второй (со стороны блока 19) и третий (со стороны задатчика 16) положительные входы сумматора 18 имеют единичные коэффициент усиления, а первый положительный вход (со стороны датчика 15) - коэффициент усиления

Таким образом, на выходе сумматора 13 формируется сигнал Поскольку функциональный преобразователь 24 формирует сигнал cos q3, то на выходе блока 19 появляется сигнал а на выходе сумматора 18 - сигнал

Датчик 23 измеряет ускорение вращения второй степени подвижности робота (координату ), поэтому на выходе блока 22 формируется сигнал

Датчик 14 измеряет скорость вращения второй степени подвижности (координату ), а функциональный преобразователь 25 формирует сигнал sin q3. Поэтому на выходе блока 20 появляется сигнал а на выходе блока 21 - сигнал

Датчик 26 измеряет угол поворота во второй степени подвижности (координату q2). Сумматор 27 имеет положительные входы с единичными коэффициентами усиления, а функциональные преобразователи 28 и 32, соответственно, формируют сигналы sin(q2+q3) и cos(q2+q3). Датчики 31 и 35, соответственно, установлены и измеряют ускорения движения в первой (координата и четвертой (координата степенях подвижности робота. В результате на выходе блоков 30 и 34 умножения, соответственно, формируются сигналы и

С учетом отмеченных выше коэффициентов усиления соответствующих входов сумматора 11 на его выходе формируется сигнал

на выходе сумматора 2 - сигнал а на выходе блока 3 - сигнал

Таким образом, с учетом указанных ранее коэффициентов усиления соответствующих входов сумматора 4 на его выходе окончательно будет сформирован сигнал

Несложно показать, что поскольку при движении привода достаточно точно соответствует Мстр, то, подставив значение U*(3) в соотношение (2), получим уравнение которое имеет постоянные желаемые параметры, т.е. привод, управляющий координатой q3, будет обладать постоянными желаемыми динамическими свойствами и качественными показателями.

Таким образом, за счет дополнительного введения четвертого косинусного функционального преобразователя 32, восьмого 33 и девятого 34 блоков умножения, а также третьего датчика 35 ускорения, удалось обеспечить полную инвариантность рассматриваемого привода к эффектам взаимовлияния между степенями подвижности робота и моментам трения. Это позволяет получить стабильно высокое качество управления в любых режимах работы рассматриваемого привода.

Устройство для управления приводом робота, содержащее последовательно соединенные первый сумматор, второй сумматор, первый блок умножения, третий сумматор, усилитель и двигатель, связанный с первым датчиком скорости непосредственно и через редуктор с первым датчиком положения, выход которого подключен к первому входу первого сумматора, соединенного вторым входом с входом устройства, последовательно подключенные релейный элемент и четвертый сумматор, второй вход которого подключен к входу релейного элемента, второму входу второго сумматора и выходу первого датчика скорости, выход - к второму входу третьего сумматора, последовательно соединенные первый задатчик сигнала и пятый сумматор, а также второй датчик скорости, датчик массы, второй задатчик сигнала, квадратор, шестой сумматор и с второго по пятый блоки умножения, первый датчик ускорения, а также первый косинусный и второй синусный функциональные преобразователи, вход каждого из которых соединен с выходом первого датчика положения, выход датчика массы подключен к второму входу первого блока умножения, первому входу шестого сумматора и второму входу пятого сумматора, соединенного выходом с первыми входами второго и третьего блоков умножения, второй вход каждого из которых подключен, соответственно, к выходам первого и второго функциональных преобразователей, а их выходы, соответственно - ко второму входу шестого сумматора и первому входу четвертого блока умножения, соединенного вторым входом через квадратор с выходом второго датчика скорости, а выходом с третьим входом четвертого сумматора, четвертый вход которого подключен к выходу пятого блока умножения, соединенного первым входом с выходом первого датчика ускорения, а вторым входом - с выходом шестого сумматора, третий вход которого подключен к выходу второго задатчика сигнала, а выход второго сумматора соединен с третьим входом третьего сумматора, последовательно соединенные второй датчик положения, седьмой сумматор, второй вход которого подключен к выходу первого датчика положения, третий синусный функциональный преобразователь, шестой блок умножения, второй вход которого подключен к выходу пятого сумматора, и седьмой блок умножения, второй вход которого подключен к выходу второго датчика ускорения, а его выход - к пятому входу четвертого сумматора, отличающееся тем, что в него дополнительно введены последовательно соединенные четвертый косинусный функциональный преобразователь, подключенный входом к выходу седьмого сумматора, восьмой блок умножения, второй вход которого соединен с выходом пятого сумматора, и девятый блок умножения, второй вход которого соединен с выходом третьего датчика ускорения, а его выход - с шестым входом четвертого сумматора.



 

Похожие патенты:

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами робота. .

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами робота. .

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами робота. .

Изобретение относится к автоматике и вычислительной технике и может быть использовано при решении задач управления режимами больших электроэнергетических систем.

Изобретение относится к интеллектуальным контроллерам, использующим принцип обучения с подкреплением, и может использоваться для управления сложными системами. .

Изобретение относится к технической кибернетике и может быть использовано в системах регулирования объектами, параметры которых - меняющиеся во времени величины с постоянным периодом изменения.

Изобретение относится к области автоматического управления и предназначено для следящих инверторов с односторонней двухполярной широтно-импульсной модуляцией (ШИМ) и с LC-фильтром в непрерывной части, может найти широкое применение в управлении электроприводами, регулируемыми источниками питания и другими техническими устройствами.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано при моделировании самовосстанавливающихся систем для сбора и регистрации статистических данных о функционировании таких систем.

Изобретение относится к автоматике, в частности к адаптивным системам автоматического управления, предназначено для управления объектами с переменным транспортным запаздыванием, и может применяться в поточных линиях текстильной, легкой и химической промышленности.

Изобретение относится к сварочному производству, в частности к видеосенсорному устройству, которое может быть использовано при электродуговой сварке шва с произвольной конфигурацией промышленными роботами.

Изобретение относится к робототехнике с системами автоматического управления и может быть использовано при ориентации груза относительно объекта для его последующего закрепления.

Изобретение относится к измерительной технике и может быть использовано для измерения сил реакций опоры, действующих на ноги шагающих движущихся тел, и оценке сил, действующих на суставы ног этих движущихся тел.

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами робота. .

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами робота. .

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами робота. .

Изобретение относится к вычислительной технике и может быть использовано в системах технического зрения для управления транспортными средствами типа робокаров, передвигающихся по непересекающимся трассам-ориентирам.

Изобретение относится к кузнечно-прессовому оборудованию для изготовления крупных поковок с вытянутой осью методом горячей штамповки. .

Изобретение относится к робототехнике и может быть использовано при создании систем управления приводом роботами. .

Изобретение относится к робототехнике и может быть использовано при создании приводов роботов. .

Изобретение относится к способам повышения точности выхода в заданное положение конечного звена манипулятора на заключительном этапе движения и может быть использовано в робототехнике
Наверх