Нанокриогенная система, работающая по циклу стирлинга

Изобретение относится к криогенной технике и может быть использовано при проектировании и производстве криогенных систем, предназначенных для поддержания на криогенном температурном уровне объектов микроэлектроники, экспериментальной физики, биологических исследований, а также нанотехнических устройств микро- и нанометровых размеров. Криогенная система работает по циклу Стирлинга. В состав системы входят узлы сжатия и расширения, теплообменники нагрузки, отвода теплоты и регенератор. Узел сжатия выполнен из фуллерена, изменяющего свой объем под действием импульсного нагрева или электрического поля. Узел расширения выполнен из фуллеренов или нанотрубок, изменяющих свои размеры под действием электрического поля. Теплообменники нагрузки, отвода теплоты и регенератор выполнены из однослойных или вложенных нанотрубок. Технический результат при осуществлении изобретения заключается в качественном уменьшении габаритов, массы и энергопотребления КС до уровня, на котором величина холодопроизводительности оказывается минимально достаточной для поддержания объекта охлаждения на требуемом криогенном уровне температур. 1 ил.

 

Изобретение относится к криогенной технике и может быть использовано при проектировании и производстве криогенных систем, предназначенных для поддержания на криогенном температурном уровне объектов микроэлектроники, экспериментальной физики, биологических исследований, а также нанотехнических устройств микро- и нанометровых размеров.

Известны криогенные системы (КС), работающие по циклу Стирлинга и содержащие узлы сжатия и расширения, теплообменники нагрузки, отвода теплоты и регенератор (см. Справочник по физико-техническим основам криогеники. Под редакцией проф. М.П.Малкова, М., Энергоатомиздат, 1985, с.54-69).

Известные КС Стирлинга при решении задач криостатирования микро- и нанообъектов имеют ряд существенных недостатков, обусловленных принципиальным несоответствием массогабаритных характеристик КС и охладаемого объекта.

1. Высокий уровень теплопритоков к низкотемпературным элементам КС и, как следствие, большие непроизводительные затраты холода на компенсацию этих теплопритоков и потребляемая при этом мощность.

2. Большая охлаждаемая масса низкотемпературных элементов КС, на несколько порядков превышающая массу охлаждаемого объекта, определяет большое время достижения температурой охлаждаемого объекта заданного криогенного уровня.

3. Возможности снижения массы и габаритов КС, направленного на минимизацию названных недостатков ограничены принципиальными трудностями конструкционного и технологического характера: сложности изготовления сверхминиатюрных элементов КС и их сборки, ограниченные прочностные и теплофизические характеристики традиционных конструкционных материалов и ряд других.

Наиболее близкой к заявляемому техническому решению является КС, содержащая дроссельный криогенный узел, выполненный непосредственно в подложке микросхемы (см. Криогенные системы, т.2, Основы проектирования аппаратов, установок и систем. Под общей редакцией А.М.Архарова и А.И.Смородина, М., Машиностроение, 1999, с.698), принятый за прототип. Данное техническое решение, по сравнению с известными КС, позволяет существенно уменьшить охлаждаемую массу, сократить время достижения температурой криостатируемого объекта рабочего уровня (время выхода на режим), улучшить энергетические и массогабаритные показатели системы "КС - объект охлаждения".

Основным недостатком этого технического решения является необходимость использования достаточно крупногабаритных и энергоемких источников рабочего газа (баллон или компрессор), многократно превышающих по габаритам и массе соответствующие параметры объекта охлаждения.

Задача, на решение которой направлено заявляемое изобретение, состоит в повышении технической и экономической эффективности процесса криостатирования объектов микро- и нанометровых размеров.

Технический результат при осуществлении изобретения заключается в качественном уменьшении габаритов, массы и энергопотребления КС до уровня, на котором величина холодопроизводительности оказывается минимально достаточной для поддержания объекта охлаждения на требуемом криогенном уровне температур.

Указанный технический результат для осуществления изобретения достигается тем, что в известной криогенной системе, работающей по циклу Стирлинга и содержащей узлы сжатия и расширения, теплообменники нагрузки, отвода теплоты и регенератор, узел сжатия выполнен из фуллерена, изменяющего свой объем под действием импульсного нагрева или электрического поля, узел расширения выполнен из фуллеренов или нанотрубок, изменяющих свои размеры под действием электрического поля, а теплообменники нагрузки, отвода теплоты и регенератор выполнены из однослойных или вложенных нанотрубок.

Отличительной особенностью заявляемого технического решения является то, что выполнение КС Стирлинга в соответствии с перечисленными признаками позволяет качественно уменьшить габариты КС до микро- и нанометровых размеров, а свойство наноструктур изменять свои размеры под действием электрического поля или импульсного нагрева используется для реализации функций узлов сжатия и расширения рабочего газа. При этом может быть обеспечено оптимальное соответствие габаритов и конфигурации теплообменника нагрузки КС условиям его стыковки с охлаждаемым объектом, благодаря чему непроизводительные затраты холодопроизводительности и потребляемая мощность оказываются сведенными к минимуму.

Таким образом, при реализации предлагаемого технического решения принципиально уменьшается масса, габариты и энергопотребление КС, величина охлаждаемой массы КС снижается до уровня массы охлаждаемого объекта, создаются условия для качественного улучшения тепловой стыковки КС и охлаждаемого объекта, сокращается время достижения температурой охлаждаемого объекта заданного уровня и снижаются непроизводительные затраты полезной холодопроизводительности и потребляемой мощности.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил аналог, характеризующийся признаками, тождественными (идентичными) всем существенным признакам заявленного изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволило установить совокупность существенных, по отношению к усматриваемому заявителем техническому результату, отличительных признаков в заявленном способе, изложенных в формуле изобретения, что позволяет сделать вывод о соответствии заявляемого изобретения критерию "новизна".

Дополнительный поиск известных решений, проведенный с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявляемого способа, показал, что заявляемое изобретение не вытекает для специалиста явным образом из известного уровня техники, определенного заявителем. Это позволяет сделать вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".

Сущность заявляемого технического решения поясняет принципиальная схема варианта КС, работающей по циклу Стерлинга, представленная на чертеже.

КС представляет собой замкнутый объем, заполненный рабочим газом (гелием) и образованный последовательно соединенными внутренними объемами узлов сжатия 1 и расширения 5, выполненных из фуллеренов, изготовленных из нанотрубок теплообменников отвода теплоты 2 и теплообменника нагрузки 4 и регенератора 3, выполненного из вложенных нанотрубок.

При работе КС узел создания пульсаций давления 1 и узел расширения рабочего газа 5, изменяя свои объемы под действием переменных электрических полей, взаимно сдвинутых по фазе, обеспечивают перемещение рабочего газа внутри полости КС и реализацию обратного термодинамического цикла Стирлинга. При этом в теплообменнике нагрузки 4 происходит поглощение теплоты на температурном уровне Тх, а в теплообменнике отвода теплоты 2 происходит отвод теплоты в окружающую среду на температурном уровне Тос.

Для доведения заявляемого технического решения до промышленного использования на предприятии требуется проведение комплекса научно-технических, расчетных, экспериментальных и проектировочно-конструкторских работ.

Криогенная система, работающая по циклу Стирлинга и содержащая узлы сжатия и расширения, теплообменники нагрузки, отвода теплоты и регенератор, отличающаяся тем, что узел сжатия выполнен из фуллерена, изменяющего свой объем под действием импульсного нагрева или электрического поля, узел расширения выполнен из фуллеренов или нанотрубок, изменяющих свои размеры под действием электрического поля, а теплообменники нагрузки, отвода теплоты и регенератор выполнены из однослойных или вложенных нанотрубок.



 

Похожие патенты:

Изобретение относится к области малой энергетики и газовых регенеративных машин, работающих по прямому и обратному циклам Стирлинга. .

Изобретение относится к области холодильной техники, а именно к способу получения холода и устройствам его реализации, и может быть использовано в промышленных установках для получения холода в условиях хранения различных скоропортящихся продуктов: например, для кондиционирования помещений, для охлаждения молока и подогрева воды для мытья посуды на молочных фермах, для охлаждения продуктов при хранении.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для объектов, функционирующих без связи с атмосферой.

Изобретение относится к проектированию газовых холодильных машин с клапанным управлением потока рабочего тела, работающих по обратному термодинамическому циклу, и может найти применение при проектировании простых и надежных в эксплуатации машин.

Изобретение относится к созданию телевизионной аппаратуры для космических телескопов, космических аппаратов (КА) с трехосной стабилизацией, выполняющих исследования в дальнем космосе, и дистанционного зондирования Земли с различным космических орбит.

Изобретение относится к криогенной технике и криогенным холодильным машинам, работающим по обратному циклу Стирлинга. .

Изобретение относится к криогенной технике и криогенным машинам, работающим по обратному циклу Стирлинга. .

Изобретение относится к области криогенной техники и криогенных холодильных машин, работающих по обратному циклу Стирлинга, может быть использовано в качестве установки для очистки воздуха в герметичных помещениях специальных фортификационных сооружений, подводных лодок, орбитальных станций и т.д.

Изобретение относится к криогенной технике, а именно к способам изготовления криогенных охладителей, применяемых в миниатюрных газовых криогенных машинах, работающих по замкнутому обратному циклу Стирлинга

Изобретение относится к холодильной технике и может быть использовано в медицине, а также для сжижения газов

Изобретение относится к холодильной и криогенной технике

Изобретение относится к холодильной и криогенной технике

Изобретение относится к медицинской технике, а именно к криомедицине

Криогенная система содержит емкость для жидкого гелия, сверхпроводящие обмотки магнита, погруженные в жидкий гелий, конденсатор для повторного ожижения паров гелия, который имеет сужающуюся гладкую поверхность, на которой конденсируются пары гелия и которая периодически прерывается прерывающей конструкцией, которая вызывает вытекание жидкого гелия, который конденсируется на гладкой поверхности, из конденсатора для повторного ожижения. Конденсатор содержит охлаждаемый объект, который имеет сужающуюся гладкую поверхность, выполненную с возможностью ее установки по вертикальной оси, множество ребер, проходящих по периферии вокруг гладкой поверхности. Верхний край каждого ребра расположен заподлицо с участком гладкой поверхности, находящимся непосредственно выше, и периметр нижнего края каждого ребра больше, чем у его верхнего края. Между верхним и нижним краями каждого ребра образована гладкая наклонная поверхность. Способ изготовления конденсатора для повторного ожижения, при котором осуществляют механическую обработку металлического элемента для получения круговой гладкой поверхности конденсатора для повторного ожижения, прерываемую множеством проходящих по окружности или спирали ребер, которые выступают из гладкой круговой поверхности, или канавок, вырезанных в гладкой кольцевой поверхности. Использование данной группы изобретений обеспечивает повышение эффективности системы криогенного охлаждения. 4 н. и 11 з.п. ф-лы, 4 ил.
Наверх