Способ получения литых биметаллических штампов сталь - алюминий

Изобретение может быть использовано для изготовления тяжело нагруженных штампов горячего деформирования и пресс-форм литья под давлением. В подогретую форму заливают алюминиевый сплав, характеризующийся высокой теплопроводностью. Затем заливают расплав высоколегированной стали и одновременно осуществляют интенсивное охлаждение расплава для создания направленной снизу вверх кристаллизации. Алюминиевый сплав, проходя через заливаемый слой стали, рафинирует ее, очищая от вредных примесей. Направленную кристаллизацию расплавов осуществляют в течение времени, необходимого для затвердевания 80-90% объема залитого расплава. Полученная отливка имеет износостойкий слой из столбчатых дисперсных кристаллов стали, переходный слой с композитной структурой и основу из высокотеплопроводного пластичного металла. Обеспечивается повышение качества литых заготовок и снижение себестоимости. 2 ил.

 

Изобретение относится к литейному производству, а именно к получению и использованию материалов для тяжело нагруженных штампов горячего деформирования и пресс-форм литья под давлением.

Существует способ получения литых биметаллических штампов, включающий послойную заливку металла в литейную форму и направленное охлаждение со стороны нижнего торца заготовки [1], который является близким к изобретению по технической сущности и достигаемому результату.

Недостатком известного способа является то, что он не обеспечивает высокое качество штампов из-за сравнительно низкой теплопроводности опорного слоя стали, что отрицательно сказывается на стойкости штампов. Еще одним из главных существенных недостатков этого способа является невозможность утилизации раздельно поверхностно-легированной стали и опорного слоя.

Изобретение направлено на повышение качества литых заготовок и снижение себестоимости.

Использование предлагаемого способа позволяет повысить качество, а соответственно и работоспособность литых штампов за счет формирования на рабочих поверхностях малодисперсного высоколегированного слоя, характеризующегося высокой износостойкостью, мелкозернистого вязкого переходного слоя и основания из сплава более теплопроводного, экономить дефицитные высоколегированные стали, так как 60-80% объема штампа выполнено из теплопроводного сплава алюминия, что также снижает себестоимость штампа, и, кроме того, способ позволяет раздельно утилизировать поверхностно-легированные стали и опорный слой.

Достигается это тем, что основу штампа формируют из алюминиевого сплава, причем сначала в форму заливают алюминиевый сплав, а затем высоколегированную сталь, а направленную кристаллизацию расплавов осуществляют в течение времени, необходимого для затвердевания 80-90% объема залитого расплава.

В результате разной плотности сплавов слой алюминия всплывает на поверхность формы.

Затем ведут направленное охлаждение с помощью жидкого азота, прекращают процесс при температуре сплавав второго слоя, равной 400-500°С.

Применение сплава алюминия обеспечивает ускорение процесса окончательной кристаллизации и, как следствие, увеличивает производительность способа получения литых штампов, а также улучшает условия теплопередачи при самоотпуске. Кроме того, при эксплуатации высокая теплопроводность основания штампа позволяет улучшить теплоотвод от разогретой рабочей поверхности инструмента на массу или холодильник, устанавливаемый в держателе штампа, что существенно снижает градиент температуры и уровень термических напряжений в контактной зоне штампа и вследствие этого обусловливает повышение его работоспособности.

Сущность способа заключается в том, что алюминиевый сплав, проходя через слой стали, дополнительно рафинирует ее, очищая от вредных примесей.

Заливка расплава алюминия на первом этапе и последующая заливка стали на втором обусловлена тем, что сплав алюминия менее подвержен взаимодействию с газами атмосферы. Что в свою очередь улучшает свойства литых соединений. В случае при ограниченной взаимной растворимости металлов легче избежать образования стойких интерметаллических фаз, обладающих высокой твердостью и хрупкостью.

Применение интенсивного охлаждения со стороны нижнего торца, например с помощью жидкого азота, обеспечивает направленную, снизу вверх, кристаллизацию заготовки, что позволяет получить мелкодисперсную с благоприятной для износостойкости ориентировкой зерен структуру гравюры штампа. При этом для получения композитной структуры переходного слоя, состоящего из интерметаллидов сложного состава, а также с целью предотвращения образования на поверхности раздела неслитин и окисных пленок заливку второго сплава для первого слоя начинают сразу, после заливки первого и ведут охлаждение.

На фиг.1 изображено устройство для реализации предлагаемого способа. Показана стадия кристаллизации высоколегированной стали, оформляющей первый слой. На фиг.2 изображена схема строения слоев заготовки. Устройство для реализации способа (фиг.1) содержит кристаллизатор 1 с испарительной камерой 2 для жидкого азота, боковую полуформу 3, верхнюю полуформу 4 с выполненными в ней литником 5 и прибылью 6.

Способ реализуют следующим образом.

В предварительно разогретый до температуры 200-300°С кристаллизатор 1 (фиг.1) производят заливку сплава алюминия, характеризующегося высокой теплопроводностью и пониженной на 750-800°С, чем у сплава, залитого для оформления первого слоя, температурой плавления.

Затем жидкий расплав 8 высоколегированного сплава стали через канал 5 заливают в полость 7 формы и одновременно подают жидкий азот в испарительную камеру 2. Интенсивное охлаждение через испарительную камеру 2 обеспечивает в полости 7 формы направленную снизу вверх кристаллизацию расплава. Направленную кристаллизацию осуществляют в течение времени, необходимого для затвердевания 80-90% объема залитого биметаллического сплава. При этом образуется слой направленно закристаллизовавшегося расплава 8 (фиг.2), а часть (20-70%) расплава 9 остается незакристаллизовавшейся.

Структура отливки штампа, полученного предлагаемым способом, состоит из трех характерных зон (фиг.2). Зона 1 рабочей поверхности штампа представлена износостойким слоем из столбчатых дисперсных кристаллов высоколегированной стали, переходного слоя 2 с композитной структурой, основу которой формирует высокотеплопроводный пластичный металл, армированный кристаллами высоколегированной стали. Структура слоя имеет плавный переход, как по химическому составу, так и по размеру зерен от поверхностно-легированного слоя к основанию штампа.

Последняя зона 3, относящаяся к телу штампа, практически не отличается по химическому составу от заливаемого сплава для второго слоя.

Источники информации

1. Авторское свидетельство СССР №1138240, кл. В 22 D 27/04, 1984.

Способ получения литых биметаллических штампов сталь - алюминий, включающий заливку в форму высоколегированной стали для формирования рабочей поверхности штампа и сплава с высокой теплопроводностью для создания направленной кристаллизации снизу вверх, отличающийся тем, что основу штампа формируют из алюминиевого сплава, причем сначала в форму заливают алюминиевый сплав, а затем высоколегированную сталь, а направленную кристаллизацию расплавов осуществляют в течение времени, необходимого для затвердевания 80-90% объема залитого расплава.



 

Похожие патенты:

Изобретение относится к электрошлаковой наплавке и предназначено для восстановления и упрочнения деталей с большим износом (коронки рыхлителей бульдозеров, зубья ковшей экскаваторов и др.).

Изобретение относится к литейному производству, в частности к получению литьем шарошек, армированных твердосплавными элементами. .

Изобретение относится к электрошлаковой наплавке и может быть использовало для упрочнения преимущественно породоразрушающего инструмента (билы размольно-дробильного оборудования, зубья ковшей экскаваторов, коронки (рыхлителей бульдозеров, ножи отвалов и т.п.), а также других деталей, подвергающихся интенсивному износу.

Изобретение относится к дроблению, измельчению твердых материалов в черной и цветной металлургии и может быть использовано для изготовления износостойких ударных изделий, например молотков (бил) молотковых дробилок.

Изобретение относится к области технологии ремонта металлорежущего инструмента сложного фасонного профиля и может быть использовано, в частности, для восстановления рабочих поверхностей ножей сложного профиля сборных фасонных фрез для обточки колесных пар железнодорожного транспорта.
Изобретение относится к восстановлению деталей с большим износом и может быть использовано для восстановления бил молотковых мельниц

Изобретение относится к машиностроению и может быть использовано при изготовлении алмазного или эльборового инструмента, в частности алмазной шлифовальной фрезы, предназначенного для обработки деталей из неметаллических материалов, например бетона, природного камня, в том числе для их обработки без использования охлаждающей среды
Изобретение относится к литейному производству. Способ включает заливку в охлаждаемую литейную форму первого слоя из суспензионной ферритной стали толщиной, составляющей 10÷50% объема литейной формы. Сталь содержит, мас.%: углерод - 0,27÷0,32, титан - 5,8÷6,2, никель - 0,5÷0,9, железо - остальное. В струю расплава вводят карбид титана в виде порошка в количестве 0,5÷1,5% с размерами частиц до 10 мкм. Проводят охлаждение формы водой или жидким азотом. После затвердевания суспензионной стали на 30÷80% в форму заливают второй слой из алюминиевого чугуна, содержащего, мас.%: углерод - 3,0÷3.4, алюминий - 2,0÷4,0, кремний - 0,5, марганец - 0,2÷0,4, фосфор - 0,05, сера - 0,02, железо - остальное. Алюминиевый чугун обладает теплопроводностью большей на 80%, чем у ферритной стали, что обеспечивает ускорение процесса кристаллизации. 1 пр.
Изобретение относится к области машиностроения. Техническим результатом изобретения является обеспечение характеристик пластичности, вязкости, прочности материала литых штампов после упрочняющей термической обработки не ниже соответствующих характеристик инструмента, изготовленного из кованых заготовок. Способ изготовления литых штампов из теплостойких сталей повышенной вязкости типа 5ХНМ и 4Х5МФС используемых для работы при повышенных ударных нагрузках, включает в себя переплав отработанного инструмента одной марки стали, заливку расплавленного металла в форму, кристаллизацию и охлаждение отливки, предварительную термическую обработку, механическую обработку, закалку с последующим отпуском. Предварительную термическую обработку производят по режиму: нагревают на температуру Ас3+(30-40)°C, выдерживают при этой температуре два часа, охлаждают со скоростью 25-30°C в час до Ar1-(20-30)°C, выдерживают при этой температуре до 5 часов, охлаждают с печью до 500-550°C, окончательно охлаждают на воздухе, а температуру закалки не ограничивают нижним пределом. 1 пр.

Изобретение может быть использовано при нанесении упрочняющего покрытия в сельхозмашиностроении, горнодобывающей промышленности, дорожном строительстве. На детали размещают наплавочную шихту, которую расплавляют высокочастотным полем. Затем расплавленный слой шихты охлаждают до 1050-1150оС и прокатывают с удельным давлением 20-60 МПа валком, нагретым до температуры 150-250°C. Обеспечивается повышение качества упрочняющего покрытия. 4 ил., 1 табл.

Изобретение может быть использовано на нефтяных месторождениях. Скважинный инструмент содержит вставку 400, включающую внутренний компонент 410 и металлическое покрытие 420, вокруг, по меньшей мере, части поверхности внутреннего компонента. Внутренний компонент имеет цилиндрическую форму и определяет канал, проходящий через его верхнюю часть 414 и нижнюю часть 416. Скважинный инструмент отливают в узле 500, содержащем литейную форму 510, стержень 520, элементы 522 сопел, вставку 400, воронку 540 и стакан 550 для связующего материала. В литейную форму загружают порошок 530 карбида вольфрама. После помещения формы в печь связующий материал плавится и пропитывает порошок карбида вольфрама, формируя сцементированный материал матрицы. Покрытие 420 уменьшает миграцию связующего материала во вставку, позволяя обеспечить управление толщиной интерметаллических соединений на соединительной линии. Обеспечивается уменьшение частоты возникновения поломок вдоль соединительной линии между сцементированной матрицей и вставкой. 3 н. и 22 з.п. ф-лы, 9 ил.

Изобретение относится к способу обработки материала энергетическим лучом и способу образования изделия направленной кристаллизацией. Осуществляют выращивание подложки (24) по мере кристаллизации ванны (28) расплава под слоем (30) расплавленного шлака. Энергетический луч (36) используют для расплавления порошка (32) или полой подаваемой проволоки (42) с наполнителем (44) из порошкообразного сплава под слоем шлака. Слой шлака является по меньшей мере частично прозрачным (37) для энергетического луча и он может быть частично оптически поглощающим или проницаемым для энергетического пучка, чтобы поглощать достаточно энергии, оставаясь расплавленным. Как и при обычном процессе ЭШС, слой шлака изолирует расплавленный материал и защищает его от реакции с воздухом. Состав порошка может быть изменен по оси (А) кристаллизации результирующей детали (60), чтобы обеспечить функционально градиентное направленно-кристаллизованное изделие. 2 н. и 16 з.п. ф –лы, 5 ил., 1 табл.
Наверх