Сцинтилляционный детектор

Изобретение относится к области технологии регистрации нейтрино и антинейтрино, включая солнечные, космические, реакторные нейтрино и нейтрино, получаемые с помощью ускорителей. Задачей изобретения является возможность регистрации слабых потоков нейтронов и нейтрино за счет повышения уровня светосбора в пластиковом сцинтилляторе объемно-волоконного сцинтилляционного детектора. Предложенный сцинтилляционный детектор содержит по крайней мере один датчик, состоящий из пластикового сцинтиллятора на основе органического водородсодержащего материала, чувствительного к нейтронам и нейтрино, светособирающего волоконного световода, фотоприемное устройство и блок электронной обработки сигналов. При этом пластиковый сцинтиллятор выполнен в форме цилиндра, покрытого светоотражающей пленкой, в центре которого имеется полый канал с размещенным в нем светособирающим волоконным световодом, причем каждый датчик имеет корпус в форме параллелепипеда, набор которых от одного до нескольких тысяч штук при регистрации нейтронных потоков и нейтрино образует сцинтилляционный блок, связанный с фотоприемным устройством. 1 ил.

 

Изобретение относится к области ядерной физики, астрофизики и физики высоких энергий, конкретно к области технологии регистрации нейтрино и антинейтрино (далее нейтрино), включая солнечные, космические, реакторные нейтрино, нейтрино, получаемые с помощью ускорителей; оно пригодно для создания нейтринных телескопов, нейтронных и нейтринных детекторов и детекторных комплексов наземного и космического базирования, предназначенных для удаленного, включая трансземное, обнаружения стационарных и мобильных ядерных реакторных и ускорительных установок, и может быть использовано в системах производственного и таможенного контроля за нейтронными источниками и делящимися радиоактивными материалами, а также в системах радиационного мониторинга радиационного фона Земли.

Быстрые нейтроны эффективно регистрируются с помощью сцинтилляторов, содержащих водород. Сцинтилляции возникают при рассеянии нейтронов на ядрах водорода. Нейтрино зарегистрировать труднее, чем зарегистрировать нейтроны. Нейтрино ν и антинейтрино обладают огромной проникающей способностью вследствие их чрезвычайно низкого сечения взаимодействия с большинством ядер элементов. Например, сечение взаимодействия антинейтрино с ядрами водорода (наиболее часто использующимися при детектировании в составе большеобъемных жидких или пластиковых сцинтилляционных детекторов) по реакции

равно (Большой энциклопедический словарь. Физика. Ред. А.М.Прохоров. Большая Российская энциклопедия. М. 1998, 944 с.) Нейтрино и антинейтрино отличаются своим происхождением: нейтрино рождается в паре с позитроном, а антинейтрино - в паре с электроном. Продукты реакции (1) вызывают сцинтилляции в сцинтилляторе, содержащем ядра водорода. Таким образом, и для регистрации нейтрино используется сцинтилляционный метод с применением водородосодержащих сцинтилляторов.

Известен сцинтилляционный детектор нейтронов (Патент РФ №2189057, МПК G01T 1/20, 3/06, бюл. №25. 10.09.2002). Детектор содержит пластиковый сцинтиллятор, (n, α, γ) - конвертор из карбида или нитрида бора, сцинтилляционный кристалл NaI-Tl и фотоприемное устройство (ФЭУ).

Основным недостатком является то, что эффективность светосбора сцинтилляций, возникающих в пластиковом сцинтилляторе от быстрых нейтронов, невысока, поскольку пластиковый сцинтиллятор в известном детекторе соприкасается с фотоприемным устройством не всей плоскостью, а только по периферийному кольцу. Площадь соприкосновения пластикового сцинтиллятора с окном фотоприемного устройства составляет 30-40% от площади окна, поэтому эффективность фотосъема не превышает 30-40% от фотосбора в режиме, когда сцинтиллятор соприкасается с ФЭУ всем своим рабочим торцом. (n, α, γ) - конвертор из карбида или нитрида бора является светонепроницаемым и часть сцинтилляций от пластикового сцинтиллятора в нем теряется. Таким образом, известный детектор нейтронов (Патент РФ №2189057) обладает недостаточно высоким уровнем светосбора сцинтилляций и, как следствие, недостаточно высокой чувствительностью к быстрым нейтронам и нейтрино.

Известен сцинтилляционный детектор быстрых и тепловых нейтронов на основе пластикового сцинтиллятора и 6Li-силикатного стекла (Патент РФ №2143711, G01T 1/20, 3/00, бюл. №36. 29.12.1999). Известный детектор содержит датчик и блок электронной обработки сигналов. В состав датчика входят помещенные в единый корпус фотоприемное устройство и три параллельно-последовательно соединенных сцинтиллятора:

1) внешний нейтронный сцинтиллятор, выполненный из чувствительного к быстрым нейтронам органического водородсодержащего вещества на основе пластмассы (СН)n или стильбена (сцинтиллятор с колодцем);

2) размещенный в колодце внешнего сцинтиллятора сцинтилляционный кристалл NaI-Tl в стандартном контейнере, чувствительный к гамма-излучению;

3) чувствительный к тепловым нейтронам внутренний сцинтиллятор на основе активированного церием 6Li-силикатного стекла.

Блок электронной обработки сигналов включает схему временной селекции сцинтиимпульсов от нейтроночувствительных сцинтилляторов и от гамма-чувствительного сцинтиллятора, а также спектрометрический анализатор для обработки сцинтиимпульсов от сцинтилляционного кристалла NaI-Tl.

Однако для известного детектора эффективность светосбора сцинтилляций от быстрых нейтронов, возникающих во внутреннем пластиковом сцинтилляторе (СН)n, невысока из-за того, что сигналы, во-первых, поступают на фотоприемное устройство только по периферийному кольцу, обеспечивая фотосъем сцинтилляций на уровне до 30-40% вследствие того, что кристалл NaI-Tl находится в непрозрачном корпусе и экранирует часть светового потока, возникающего в пластике, а также, вследствие того, что излучение быстрого пластикового сцинтиллятора не непосредственно попадает на фотоприемное устройство, а поступает на него через внутренний стеклянный сцинтиллятор и частично поглощается в нем. В итоге может быть потеряно до 32-43% полезной информации. Таким образом, известный детектор не может обеспечить эффективную регистрацию быстрых нейтронов и нейтрино из-за недостаточно высокого уровня светосбора сцинтилляций.

Известен сцинтилляционный детектор быстрых и тепловых нейтронов (Патент РФ №2259573, МПК G01T 1/20, 3/00, бюл. №36. 29.12.1999), содержащий датчик, включающий сцинтиллятор на основе органического водородсодержащего пластика, чувствительного к быстрым нейтронам, и стеклянный сцинтиллятор на основе 6Li-силикатного стекла, чувствительного к тепловым нейтронам, и фотоприемное устройство, а также блок электронной обработки сигналов, при этом сцинтилляторы датчика выполнены в виде пластин с параллельными соприкасающимися гранями, причем органический сцинтиллятор выполнен в виде клина, а стеклянный - в виде параллелепипеда, образуя единый сенсорный сцинтиблок, снабженный свинцовым коллиматором и размещенный вместе с последним в дополнительном полиэтиленовом пенале-накопителе тепловых нейтронов.

Однако при установлении фотоэлектронного умножителя с торца пластикового сцинтиллятора эффективность светосбора сцинтилляций оказывается низкой, что не обеспечивает высокой чувствительности к быстрым нейтронам и нейтрино.

Из всех известных сцинтилляционных детекторов наиболее близким к заявляемому является объемно-волоконный сцинтилляционный детектор нейтронов и нейтрино, называемый авторами Сци-Бар-детектором (Н.Maesaka / The K2K SciBar Detector // Proceeding of the KEK-RCNP International School and Miniworkshop for Scintillating for Scintillating Crystal and their Application in Particle and Nuclear Physics. 2004 KEK, Tsukuba, Japan, pp.185-198; M.Hasegawa / Calibration System of the K2K SciBar Detector. // Proceeding of the KEK-RCNP International School and Miniworkshop for Scintillating for Scintillating Crystal and their Application in Particle and Nuclear Physics. 2004 KEK, Tsukuba, Japan, pp.243-248). Известный сцинтилляционный детектор нейтронов и нейтрино содержит 14400 сцинтилляционных блоков в виде параллелепипедов из пластиковых сцинтилляторов и фотоприемное устройство. Каждый сцинтилляционный блок имеет расположенный вдоль его центральной оси продольный канал, в котором размещено светособирающее волокно, играющее одновременно роль сместителя спектра. Сенсором, веществом чувствительным к нейтронам и нейтрино, является пластиковый сцинтиллятор (водородсодержащее вещество на основе полистирена с добавками РРО (1 вес.%) РОРОР (0,03 вес.%)). В качестве фотоприемного устройства применен PIN-фотодиод или многоканальный электронный умножитель.

Однако известный детектор нейтронов и нейтрино обладает недостаточно высоким уровнем светосбора сцинтилляций (из-за того, что пластиковый сцинтиллятор выполнен в форме параллелепипеда) и, как следствие, недостаточно высокой чувствительностью к быстрым нейтронам и нейтрино.

Задачей изобретения является возможность регистрации слабых потоков нейтронов и нейтрино за счет повышения уровня светосбора в пластиковом сцинтилляторе объемно-волоконного сцинтилляционного детектора.

Эта задача решается за счет того, что в сцинтилляционном детекторе, содержащем, по крайней мере, один датчик, состоящий из пластикового сцинтиллятора на основе органического водородсодержащего материала, чувствительного к нейтронам и нейтрино, светособирающего волоконного световода, фотоприемное устройство и блок обработки сигналов, пластиковый сцинтиллятор выполнен в форме цилиндра, покрытого светоотражающей пленкой, в центре которого имеется полый канал с размещенным в нем светособирающим волоконным световодом.

Сущность изобретения заключается в том, что водородсодержащий пластиковый сцинтиллятор имеет цилиндрическую форму, благодаря которой светоотражающее покрытие фокусирует световые вспышки на оси цилиндрического сцинтиллятора, вдоль которой проходит оптоволоконный световод, что обеспечивает повышенный светосбор по сравнению с пластиковым сцинтиллятором, имеющим форму параллелепипеда, в котором фокусирующее действие светоотражающего покрытия отсутствует.

Предлагаемое устройство обеспечивает регистрацию нейтронов и нейтрино с повышенной эффективностью.

Блок-схема заявляемого устройства приведена на чертеже.

Устройство состоит из трех датчиков 1, фотоприемного устройства 2 и блока электронной обработки сигналов 3. Каждый датчик 1 состоит из пластикового водородсодержащего сцинтиллятора 4, имеющего цилиндрическую форму, со светоотражающим покрытием 5. В центре пластикового сцинтиллятора 4 вдоль его оси имеется полый канал 6. Каждый датчик 1 имеет корпус 7 в форме параллелипипеда для удобства формирования из таких параллелепипедов всего сцинтилляционного детектора.

В полом канале 6 цилиндрического сцинтиллятора размещен светособирающий волоконный световод 8, расположенный, как и полый канал, вдоль основной оси сцинтиллятора. Световоды от каждого датчика соединены с фотоприемным устройством 2, а через него с блоком обработки сигналов 3. Сцинтилляционный детектор работает следующим образом. Регистрируемые нейтроны или нейтрино, попадая в пластиковый водородсодержащий сцинтиллятор 4 и рассеиваясь на ядрах водорода (нейтроны) или вступая в ядерную реакцию (нейтрино), вызывают в нем появление световых вспышек (сцинтилляций), которые благодаря светоотражающему покрытию 5 поступают на световод 8 и затем регистрируются с помощью фотоприемного устройства 2, в качестве которого обычно используют PIN-фотодиод или многоканальный фотоэлектронный умножитель. Сигналы с фотоприемного устройства 2 поступают в блок обработки сигналов 3.

Дополнительным преимуществом предлагаемого сцинтилляционного детектора является возможность регистрации с его помощью гамма-излучения, что позволяет использовать его для обнаружения радиоактивных веществ-источников гамма-излучения.

Система из цилиндрических датчиков, размещенных в корпусах, имеющих форму параллелепипеда, может содержать от единиц до тысяч датчиков, образуя сцинтилляционный детектор повышенной чувствительности. Последнее необходимо для регистрации нейтрино (несколько тысяч датчиков); для регистрации нейтронов детектор может содержать один или несколько датчиков предлагаемой конструкции.

Сцинтилляционный детектор, содержащий по крайней мере один датчик, состоящий из пластикового сцинтиллятора на основе органического водородсодержащего материала, чувствительного к нейтронам и нейтрино, светособирающего волоконного световода, фотоприемное устройство и блок электронной обработки сигналов, отличающийся тем, что пластиковый сцинтиллятор выполнен в форме цилиндра, покрытого светоотражающей пленкой, в центре которого имеется полый канал с размещенным в нем светособирающим волоконным световодом, причем каждый датчик имеет корпус в форме параллелепипеда, набор которых от одного до нескольких тысяч штук при регистрации нейтронных потоков и нейтрино образует сцинтилляционный блок, связанный с фотоприемным устройством.



 

Похожие патенты:

Изобретение относится к области дозиметрии быстрых нейтронов и гамма-излучения. .

Изобретение относится к области дозиметрии ионизирующих излучений. .

Изобретение относится к области исследования и/или анализа материалов путем определения их физических свойств, конкретно к обнаружению радиоактивных материалов. .

Изобретение относится к области анализа материалов путем определения их физических свойств, конкретно к исследованию или анализу предметов радиационными методами для обнаружения радиоактивных материалов и источников.

Изобретение относится к области ядерной физики, астрофизики и физики высоких энергий, конкретно к области технологии регистрации нейтрино и антинейтрино (далее нейтрино), включая солнечные, космические, реакторные нейтрино, нейтрино, получаемые с помощью ускорителей; оно пригодно для создания нейтринных телескопов, нейтринных детекторов и нейтринных детекторных комплексов наземного и космического базирования, пригодных для удаленного, включая трансземное, обнаружения стационарных и мобильных ядерных реакторных и ускорительных установок и для астрофизических исследований.

Изобретение относится к детекторам ядерных гамма- и нейтронного излучений и может быть использовано для обнаружения источников нейтронов, радиоактивных веществ и делящихся материалов в системах радиационного мониторинга местностей и морских акваторий, в системах индивидуальной дозиметрии, в системах таможенного радиационного контроля, обнаружения и учета ядерных и радиоактивных материалов на границах страны, а также в любых зонах контроля, оговоренных международными соглашениями.

Изобретение относится к газовым пропорционально-сцинтилляционным детекторам (ГПСД), предназначенным для регистрации ионизирующих излучений, в частности, в устройствах ядерно-физического анализа состава вещества.

Изобретение относится к устройствам для регистрации ионизирующих излучений, в частности к активационным детекторам нейтронов. .

Изобретение относится к области детектирования быстрых, промежуточных и тепловых нейтронов, а также гамма-излучения. .

Изобретение относится к области дозиметрии быстрых нейтронов и гамма-излучения. .

Изобретение относится к области дозиметрии ионизирующих излучений. .

Изобретение относится к области выращивания эпитаксиальных монокристаллических пленок для измерения рентгеновского излучения, гамма-излучения, корпускулярного и космического излучений и промышленно применимо при изготовлении детекторов ядерных частиц, нейтронов, - и -частиц, -квантов, сцинтилляционных и рентгеновских экранов.

Изобретение относится к области ядерной физики, астрофизики и физики высоких энергий, конкретно к области технологии регистрации нейтрино и антинейтрино (далее нейтрино), включая солнечные, космические, реакторные нейтрино, нейтрино, получаемые с помощью ускорителей; оно пригодно для создания нейтринных телескопов, нейтринных детекторов и нейтринных детекторных комплексов наземного и космического базирования, пригодных для удаленного, включая трансземное, обнаружения стационарных и мобильных ядерных реакторных и ускорительных установок и для астрофизических исследований.

Изобретение относится к детекторам ядерных гамма- и нейтронного излучений и может быть использовано для обнаружения источников нейтронов, радиоактивных веществ и делящихся материалов в системах радиационного мониторинга местностей и морских акваторий, в системах индивидуальной дозиметрии, в системах таможенного радиационного контроля, обнаружения и учета ядерных и радиоактивных материалов на границах страны, а также в любых зонах контроля, оговоренных международными соглашениями.

Изобретение относится к газовым пропорционально-сцинтилляционным детекторам (ГПСД), предназначенным для регистрации ионизирующих излучений, в частности, в устройствах ядерно-физического анализа состава вещества.

Изобретение относится к области анализа материалов путем определения их физических свойств, конкретно к исследованию или анализу предметов радиационными методами для обнаружения радиоактивных материалов и источников
Наверх