Молекулярный двигатель

Изобретение относится к конструкциям двигателей нанометрового размера, основанных на одной из транспортных систем живой клетки, и может быть использовано в наномашинах. Молекулярный двигатель содержит ротор с закрепленными микротрубочками, статор с закрепленными молекулами кинезина, в первом исполнении ротор и статор выполнены из углеродных нанотрубок, причем первая углеродная нанотрубка смотана в кольцо в виде жгута, а вторая обтягивает этот жгут. В следующем конструктивном исполнении дополнительно введена третья углеродная нанотрубка, являющаяся внутренней спиралью, поддерживающей изнутри жгут первой углеродной нанотрубки. Для более надежной фиксации молекул кинезина поверх ротора выполнен желоб из углеродных нанотрубок, периодически обтянутых спиралью из углеродных нанотрубок. Каркас в виде спирали может быть выполнен из нанонити. Желоб и обтягивающая его спираль могут быть изготовлены из нанонити. Изобретение позволяет обеспечить меньшую массу молекулярного двигателя и, следовательно, более высокое значение удельной мощности. 4 з.п. ф-лы, 7 ил.

 

Изобретение относится к конструкциям двигателей нанометрового размера, основанных на одной из транспортных систем живой клетки, и может быть использовано в наномашинах.

Аналогом является молекулярный двигатель [Патент на изобретение: Molecular motors. US 2002/0083710, A1, Schneider, Thomas D.; Lyakhov, Ilya Gennaddiyevich; заявлено 04.07.2002.], содержащий внутренний статор с закрепленными на его поверхности миозинами и внешний ротор с закрепленными на его внутренней поверхности актинами, а также он содержит каналы в стенке ротора для подвода аденозинтрифосфорной кислоты - АТФ как биологического топлива для взаимодействия протеиновой пары - актина и миозина.

Недостатком указанного двигателя является неравномерность подачи топлива и низкая удельная мощность.

Наиболее близким техническим решением, принятым за прототип, является молекулярный двигатель [Заявка на изобретение: «Молекулярный двигатель», №2004134864 (037919), Шестаков Игорь Александрович, Вахрушев Александр Васильевич, приоритет 29.11.2004], содержащий корпус, статор, внешний ротор, резервуар для аденозинтрифосфорной кислоты - АТФ, регулятор давления и концентрации АТФ, где в качестве биологической рабочей пары применяются кинезин и микротрубочка, при этом кинезины - биологические линейные двигатели - закреплены на наружной поверхности статора по окружности в ряд, а микротрубочки, состоящие из мономерных глобул - α-тубулин и β-тубулин, закреплены в пазу на внутренней поверхности ротора. Статор - цилиндр, закрытый с двух сторон полусферическими оболочками, имеет отверстия в стенке для выхода АТФ, расположенные вблизи кинезинов. Внутри статора установлен золотник, обеспечивающий при поворотах вокруг продольной оси статора открытие и закрытие отверстий для выхода АТФ к кинезинам. В торцевой части золотника закреплен трубопровод подачи АТФ.

Недостатком указанного двигателя является низкая удельная мощность. Это связано, прежде всего, с большой массой деталей молекулярного двигателя.

Задача изобретения - устранение указанного недостатка, то есть получение конструкции с более высоким значением удельной мощности.

Задача решается тем, что предлагаемый молекулярный двигатель содержит ротор с закрепленными микротрубочками, статор с закрепленными молекулами кинезина, отличающийся от прототипа тем, что в первом исполнении ротор и статор выполнены из углеродных нанотрубок, которые в комплексе прочнее алмаза и имеют меньшую плотность, причем первая углеродная нанотрубка смотана в кольцо в виде жгута, а вторая, в виде спирали, обтягивает этот жгут. Следующее конструктивное исполнение отличается тем, что дополнительно введена третья углеродная нанотрубка, являющаяся внутренней спиралью, поддерживающей изнутри жгут первой углеродной нанотрубки. Для более надежной фиксации молекул кинезина поверх ротора выполнен желоб из углеродных нанотрубок, периодически обтянутых спиралью из углеродных нанотрубок. Спирали могут быть выполнены из нанонитей. Желоб и обтягивающая его спираль могут быть изготовлены из нанонитей.

Такое выполнение позволяет обеспечить меньшую массу молекулярного двигателя по сравнению с прототипом и, следовательно, более высокое значение удельной мощности.

Сущность изобретения поясняется чертежами. На фиг.1 - поперечный разрез двигателя, на фиг.2 - разрез А-А фиг.1 (первое конструктивное исполнение), на фиг.3 - разрез А-А фиг.1 (второе конструктивное исполнение), на фиг.4 - статор в продольном сечении двигателя, имеющий в своей конструкции желоб, периодически обтянутый углеродными нанотрубками, на фиг.5 - вид Б фиг.4, на фиг.6 - статор в продольном сечении двигателя, где в конструкции используется нанонить, на фиг.7 - статор в продольном сечении двигателя, имеющий в своей конструкции желоб из нанонити, периодически обтянутый нанонитью.

Молекулярный двигатель содержит ротор 1 с закрепленными микротрубочками 2, статор 3 с закрепленными молекулами кинезина 4 (Фиг.1), отличающийся от прототипа тем, что в первом исполнении ротор и статор выполнены из углеродных нанотрубок, причем первая углеродная нанотрубка 5 смотана в кольцо в виде жгута 6, а вторая углеродная нанотрубка 7, в виде спирали 8, обтягивает этот жгут (Фиг.2). Следующее конструктивное исполнение отличается тем, что дополнительно введена третья углеродная нанотрубка 9, являющаяся внутренней спиралью 10, поддерживающей изнутри жгут 6 первой углеродной нанотрубки 5 (Фиг.3). Для более надежной фиксации молекул кинезина 4 поверх статора 3 из углеродных нанотрубок 11 выполнен желоб 12, периодически обтянутый углеродными нанотрубками 13 в виде спирали 14 (Фиг.4, Фиг.5). Спирали 8 и 10 в могут быть выполнены из нанонитей 15 и 16 (Фиг.6). Желоб 12 и обтягивающая его спираль 14 могут быть изготовлены из нанонитей 17 и 18 (Фиг.7).

Двигатель работает следующим образом. Пространство между статором и ротором заполняется аденозинтрифосфорной кислотой, которая используется в качестве топлива молекулами кинезина. Молекулы кинезина перемещают микротрубочки, связанные с ротором. Вращающий момент отводится от ротора.

1. Молекулярный двигатель, содержащий ротор с закрепленными микротрубочками, статор с закрепленными молекулами кинезина, отличающийся тем, что ротор и статор выполнены из углеродных нанотрубок, причем первая углеродная нанотрубка смотана в кольцо в виде жгута, а вторая, в виде спирали, обтягивает этот жгут.

2. Молекулярный двигатель по п.1, отличающийся тем, что дополнительно введена третья углеродная нанотрубка, являющаяся внутренней спиралью, поддерживающей изнутри жгут первой углеродной нанотрубки.

3. Молекулярный двигатель по п.1 или 2, отличающийся тем, что поверх ротора выполнен желоб из углеродных нанотрубок, периодически обтянутых спиралью из углеродных нанотрубок, и используемый для фиксации молекул кинезина.

4. Молекулярный двигатель по п.1 или 2, отличающийся тем, что спирали выполнены из нанонитей.

5. Молекулярный двигатель по п.3, отличающийся тем, что желоб и обтягивающая его спираль изготовлены из нанонитей.



 

Похожие патенты:

Изобретение относится к энергетике. .

Изобретение относится к области металлургии, а именно к исполнительным компонентам из сплава с эффектом памяти формы СПФ. .

Изобретение относится к области преобразования различных видов энергии в механическую работу при фазовых превращениях конденсированного вещества и может быть использовано для изготовления чувствительных элементов и исполнительных механизмов в приборах автоматики и телемеханики.

Изобретение относится к теплоэнергетике, в частности к способам, использующим рабочую среду для создания полезной работы из теплоты внешнего источника. .

Изобретение относится к средствам преобразования тепловой энергии в механическую энергию вращения и может быть использовано в качестве привода различных устройств и механизмов.

Изобретение относится к средствам передачи рабочего тела и может быть использовано для пневмомагистралей замкнутого типа в вакуумной технике и оборудования электронной техники для питания исполнительных устройств и коммутационной аппаратуры.

Изобретение относится к машиностроению, а именно к тепловым машинам, работающим по термодинамическому циклу Стирлинга, и позволяет повысить эффективность указанного цикла.

Изобретение относится к преобразователям тепловой энергии в механическую, а именно к тепловым двигателям с твердым рабочим телом. .

Изобретение относится к энергетике, а точнее к гелиотехнике, и может быть использовано для энергоснабжения потребителей

Изобретение относится к энергетике и машиностроению и может быть использовано в качестве поршневого двигателя в различных отраслях народного хозяйства

Изобретение относится к области электротехники и может быть использовано в качестве привода для перемещения рабочих органов исполнительных механизмов, применяемых в точном машиностроении, приборостроении, робототехнике, в частности может быть использовано для создания сервомеханизмов различного назначения

Изобретение относится к установкам, производящим электроэнергию, и может быть использовано в области использования возобновляемых источников энергии преимущественно для выработки электроэнергии и для привода различных механизмов, например водоподающих устройств, насосов, нефтеперекачивающих устройств, там где затраты на электроэнергию полученную централизованно велики или отсутствует централизованное снабжение

Двигатель // 2355912
Изобретение относится к энергосберегающим технологиям и может быть использовано в машиностроении, в частности в двигателестроении для преобразования тепловой энергии в механическую энергию, и осуществляется за счет линейной тепловой деформации твердых тел

Изобретение относится к способам и устройствам для преобразования энергии и может быть использовано в энергетике

Изобретение относится к системам теплообмена

Изобретение относится к авиационному оборудованию

Двигатель // 2386858
Изобретение относится к энергосберегающим технологиям и может быть использовано в машиностроении, в частности в двигателестроении, для преобразования тепловой энергии в механическую и осуществляется за счет линейной тепловой деформации твердых тел

Изобретение относится к термочувствительным устройствам и может быть использовано в первую очередь для предохранения никель-водородных и литий-ионных аккумуляторов от перегрузки и, кроме того, в качестве термодатчика, термореле, термопереключателя, преобразователя тепловой энергии в механическую, а также для создания малогабаритных приводов и устройств, способных развивать сравнительно большие усилия и т.д
Наверх