Комбинированный способ снижения влажности грунта земляного полотна при строительстве дорог

Изобретение относится к технологиям дорожно-строительных работ, в частности к технологии подготовки грунта к уплотнению при строительстве земляного полотна дорог, и может быть применено для снижения влажности, размораживания дорожных оснований и грунта на месте его добычи, а также для отверждения свежеуложенного бетона. Целью предлагаемого изобретения является уменьшение удельных энергетических затрат процесса снижения влажности грунта земляного полотна дорог, сокращение длительности процесса. Технический результат от использования предлагаемого способа заключается в уменьшении удельных энергетических затрат при снижении влажности грунта земляного полотна дорог за счет равномерного удаления влаги из объема грунта, минуя фазовый переход воды из одного агрегатного состояния в другое, без превращения ее в пар, в сокращении длительности процесса за счет большей интенсивности непрерывного удаления влаги. В комбинированном способе снижения влажности грунта земляного полотна при строительстве дорог на грунт без выемки со стороны воздушной среды одновременно и непрерывно воздействуют проточным воздухом, СВЧ-электромагнитным полем, подводимым с помощью волноводного тракта через антенны, и акустическом полем с уровнем интенсивности звука не менее 145 дБ, при этом антенны выполнены волноводно-щелевыми.

 

Изобретение относится к технологиям дорожно-строительных работ, в частности к технологии подготовки грунта к уплотнению при строительстве земляного полотна дорог, и может быть применено для снижения влажности, размораживания дорожных оснований и грунта на месте его добычи, а также для отверждения свежеуложенного бетона.

Известен способ акустической сушки капиллярно-пористых материалов (Патент RU 2062416, 6 F26B 5/02, опубл.20.06.96), в котором сушку ведут с чередующимися интервалами акустического воздействия и паузами между ними, при этом величина паузы зависит от свойств высушиваемого материала.

Этот способ может быть использован для снижения влажности грунта земляного полотна, однако, учитывая то, что максимальное уплотнение грунта при строительстве земляного полотна дорог достигается при снижении его естественной влажности до оптимальной [Э.М. Добров и др. Глинистые грунты повышенной влажности в дорожном строительстве. М.: «Транспорт», 1992 г., стр.3-5] за счет удаления избыточной влаги из всего объема уплотняемого грунта на требуемую глубину (до 50 см) без его выемки, применение его становится не целесообразным, поскольку имеется возможность воздействовать на грунт только со стороны воздушной среды, и акустическая сушка наиболее благоприятно протекает при толщине материала 3-6 см [И.А.Рогов Физические методы обработки пищевых продуктов. М., «Пищевая промышленность», 1974 г., стр.528], этого явно недостаточно для снижения влажности грунта на требуемую глубину, кроме того, при снижении влажности ее эффективность резко падает [под ред. И.П.Голяминой Ультразвук. Маленькая энциклопедия. М., «Советская энциклопедия», 1979 г., стр.339], при этом длительность паузы между интервалами акустического воздействия должна быть большой для обеспечения восполнения поверхностной влаги с глубинных слоев и по мере падения влажности грунта ее необходимо постоянно увеличивать. Все это приводит к увеличению времени обработки грунта, к снижению эффективности процесса, а учитывая неоднородность и теплофизические характеристики грунта, к некачественной подготовке его к уплотнению.

Известен способ комбинированной сушки пиломатериалов [Патент RU 2101630, 6 F26В 3/347, опубл. 10.01.98], основанный на поочередном циклическом воздействии на материал облучением микроволновой энергии и обдувом теплого воздуха. Сначала воздействуют на материал теплым воздухом, удаляется поверхностная влага, потом подводится микроволновая энергия, которая безынерционно прогревает материал на всю толщину и вызывает интенсивный приток влаги к поверхности, на последнем этапе материал интенсивно обдувается для испарения воды, таким образом, происходит подготовка к следующему циклу интенсивного воздействия микроволновой энергии.

Этот способ может быть применен для снижения влажности грунта земляного полотна, применение микроволновой энергии позволит прогреть грунт на требуемую глубину и обеспечит интенсивный приток влаги к поверхности, но возможность воздействовать на грунт только со стороны воздушной среды, циклическое чередование воздействия облучения микроволновой энергии и обдува теплым воздухом, увеличивают длительность процесса и этим снижают его эффективность, а удаление влаги с поверхности грунта в виде пара требует больших энергетических затрат.

Наиболее близким по технической сущности к предлагаемому способу является способ сушки материалов [Патент RU 2133934, 6 F26B 3/347, опубл. 27.07.99], включающий укладку обрабатываемого материала в рабочую камеру с последующей обработкой его проточным воздухом и СВЧ-электромагнитным полем, подводимым с помощью волноводного тракта подключаемого к рабочей камере через рупорные антенны прямоугольного сечения. При использовании этого способа для снижения влажности грунта земляного полотна ему присущи те же недостатки, что и предыдущему, это большие энергетические затраты и низкая эффективность процесса.

Целью предлагаемого изобретения является уменьшение удельных энергетических затрат процесса снижения влажности грунта земляного полотна дорог, повышение эффективности процесса и сокращение его длительности.

Технический результат от использования предлагаемого способа заключается в уменьшении удельных энергетических затрат при снижении влажности грунта земляного полотна дорог за счет равномерного удаления влаги из объема грунта, минуя фазовый переход воды из одного агрегатного состояния в другое, без превращения ее в пар, в сокращении длительности процесса за счет большей интенсивности непрерывного удаления влаги.

Поставленная цель достигается тем, что в комбинированном способе снижения влажности грунта земляного полотна при строительстве дорог на грунт воздействуют проточным воздухом и СВЧ-электромагнитным полем, подводимым с помощью волноводного тракта через антенны, при этом обработка грунта осуществляется непрерывно со стороны воздушной среды без выемки и с одновременным воздействием акустическим полем с уровнем интенсивности звука не менее 145 дБ, а антенны выполнены волноводно-щелевыми.

Предлагаемый способ заключается в одновременном воздействии на грунт проточного воздуха, равномерно обдувающего всю поверхность грунта, акустической волны и СВЧ-энергии, оказывающих направленное воздействие на поверхность грунта со стороны воздушной среды.

Применением СВЧ-энергии обеспечивается объемный нагрев грунта, в котором, за счет теплового расширения внутренней свободной и связанной влаги, создается избыточное давление в порах и капиллярах уже даже при температуре грунта ниже 100°С. Под влиянием избыточного давления происходит диффузия влаги на поверхность [Ю.В.Клоков Теория удаления влаги. «Хранение и переработка сельхозсырья», №1, 2002 г., стр.7]. Подбирая диапазон излучения СВЧ-энергии, можно обеспечить сушку грунта на большую (требуемую) глубину. Кроме резкого ускорения процесса выхода влаги на поверхность, СВЧ-энергия автоматически выравнивает влажность материала по объему, так как в поле СВЧ больше нагреваются участки, имеющие более высокую влажность [И.А.Рогов Современные методы и оборудование для сверхвысокочастотной обработки пищевых продуктов в промышленности. М., 1971 г., стр.26].

Под воздействием акустического поля со стороны воздушной среды на грунт происходит чисто механическое удаление влаги, без затрат энергии на нагрев грунта и испарение влаги. Это происходит вследствие дробления капель и как бы «вытряхивания» жидкости из капилляров при возникновении у поверхности сильных акустических потоков. Мелкие капли уносятся сильным воздушным потоком. Воздействие акустического поля с интенсивностью звука не менее 145 дБ резко ускоряет процесс испарения жидкости с поверхности, поскольку у влажной поверхности возникают акустические потоки, вызывающие деформацию диффузионного пограничного слоя. При этом слой становится тоньше, градиент концентрации растет, что и приводит к ускорению удаления влаги с поверхности [Маленькая энциклопедия. Ультразвук. Под ред. И.П.Голяминой. М., «Советская энциклопедия», 1979 г.]. При этом под воздействием акустической волны в грунте распространяются акустические колебания, под влиянием которых происходит уменьшение структурной вязкости коллоидного раствора воды [И.А.Рогов Физические методы обработки пищевых продуктов. М., «Пищевая промышленность», 1974 г., стр.507], это облегчает выдавливание воды по капиллярам на поверхность грунта при СВЧ-нагреве.

Направленным воздействием проточного воздуха удаляется поверхностная влага в виде пара и мелких капель.

Отличительными особенностями предлагаемого способа по сравнению с прототипом является то, что воздействие на грунт осуществляется без выемки со стороны воздушной среды, непрерывно, дополнительно используется воздействие акустической волной с интенсивностью звука не менее 145 дБ, а воздействие СВЧ-электромагнитным полем производится через волноводно-щелевые антенны.

Предлагаемый способ реализуется следующим образом.

К определенному участку грунта со стороны воздушной среды без выемки подводится проточный воздух, равномерно обдувает всю его поверхность, тем самым удаляет с поверхности участка грунта влагу и выносит ее за пределы участка. Часть проточного воздуха предварительно ответвляется и продувается через аэродинамические преобразователи, где формируется направленная акустическая волна, которую направляют на поверхность грунта. Одновременно на грунт воздействуют СВЧ-энергией, равномерно распределенной по поверхности волноводно-щелевыми антеннами, что достигается формой, расположением и количеством излучающих элементов, определенных с учетом обеспечения согласованного подвода, передачи максимального уровня мощности [В.А.Сосунов, А.А.Шибаев Саратов, Направленные ответвители и их применение. Приволжское книжное издательство, 1967 г., стр.87-107] и наилучшего их направленного действия [Г.Б.Белоцерковский Основы радиотехники и антенны. Часть II, Антенны. М.: Советское радио, 1969 г., стр.198-202]. СВЧ-энергия воздействует, в первую очередь, на содержащуюся в грунте влагу, при этом выделяемая тепловая энергия расходуется на нагрев (расширение) и испарение жидкости непосредственно внутри капилляров и пор, а также на образование в них избыточного давления, что обеспечивает интенсивное перемещение влаги из внутренних слоев грунта во внешние с выделением ее на поверхности в капельно-жидком состоянии. По мере снижения влажности поверхностных слоев грунта изменяются его диэлектрические свойства, увеличивается глубина проникновения СВЧ-энергии [В.Я.Явчуновский Микроволновая и комбинированная сушка: физические основы, технологии и оборудование. Изд. Саратовского университета, 1999 г., стр.25-26], обеспечивается выдавливание влаги с более глубинных слоев грунта. Акустическая волна воздействует на грунт, на его поверхность, где ускоряет процесс удаления поверхностной влаги воздушным потоком в жидком состоянии за счет механического удаления влаги и возникновения у влажной поверхности акустических потоков, на его подповерхностные слои, где за счет распространения акустических колебаний уменьшается вязкость коллоидного раствора воды, что облегчает ее выдавливание по капиллярам на поверхность грунта воздействием СВЧ-энергии.

Таким образом, происходит комбинированный процесс удаления влаги из грунта: СВЧ-энергия выдавливает влагу на поверхность, проточный воздух удаляет влагу с поверхности, а акустическая волна обеспечивает ускорение и удаления влаги с поверхности, и выдавливания влаги на поверхность. Это позволяет проводить процесс при более низких температурах, непрерывно, без локальных перегревов поверхностного слоя грунта, поскольку при снижении влажности поверхностного слоя грунта уменьшается воздействие на него СВЧ-энергии и акустической волны, а усиливается на более влажные слои. Процесс удаления влаги из объема грунта продолжается до достижения на требуемой глубине (до 50 см) оптимальной влажности, обеспечивающей получение максимального уплотнения грунта (для суглинков это 15%). В процессе достижения влажности грунта необходимого уровня воздействие переносят на соседний участок грунта земляного полотна, подготавливаемого к уплотнению.

Сущность предлагаемого способа состоит в том, что процесс снижения влажности грунта ведется непрерывно со стороны воздушной среды без выемки и является результатом комбинированного одновременного воздействия проточного воздуха, акустической волны и равномерно распределенной по поверхности СВЧ-энергии, в котором удается максимально использовать преимущества воздействия СВЧ-энергии на грунт, усиленные особенностями воздействия акустического поля, и при этом обеспечить удаление большей части влаги из грунта без фазового перехода воды из одного агрегатного состояния в другое, без превращения ее в пар, т.е. без затрат энергии на парообразование. Это повышает эффективность снижения влажности грунта, уменьшает энергетические затраты и сокращает длительность процесса.

Предлагаемый комбинированный способ снижения влажности грунта земляного полотна при строительстве дорог имеет все признаки непрерывного технологического процесса и может быть автоматизирован.

Эксперименты по отработке предлагаемого способа проводились на специально созданном устройстве, конструктивно выполненном в виде перемещаемой рамы, на которой размещены элементы, непосредственно обеспечивающие реализацию процесса снижения влажности грунта земляного полотна дорог: СВЧ-генераторы, излучатели, линии передачи СВЧ-энергии, акустические преобразователи, вентилятор воздушный напорный. Излучатели размещены плоскостью излучения параллельно плоскости грунта, над его поверхностью, между этими плоскостями обеспечивается воздушное пространство, для пропускания необходимого объема воздуха, обеспечивающего удаление влаги с поверхности грунта. К этому же пространству подводится от вентилятора воздушного напорного проточный воздух и акустическая волна от акустических преобразователей. Линии передачи СВЧ-энергии выполнены на стандартных прямоугольных волноводах с геометрическими размерами, соответствующими частотам генерации магнетрона, излучатели выполнены на прямоугольных волноводах с поперечными излучающими щелями, которые герметизированы диэлектрическим материалом с низкими потерями.

При создании устройства применены серийно выпускаемые СВЧ-генераторы на магнетронах М-137 в комплекте с источником питания и электронной схемой управления, вентилятор высокого давления типа ВР6-13, акустические преобразователи типа У3Г-4А.

Электрические и конструктивные характеристики устройства: рабочая частота СВЧ-генератора -460±1% МГц; выходная мощность СВЧ-генератора - 50 кВт; сечение волноводов линии передачи СВЧ-энергии - 457×228 мм; площадь поверхности грунта, накрываемая излучателями - 3,5 м2; расстояние между поверхностями грунта и излучателями - 0,1 м; акустическая мощность одного акустического преобразователя 8 кВт; частота акустического преобразователя - 45 кГц; число акустических преобразователей 3.

В результате экспериментальных исследований установлено, что использование предлагаемого комбинированного способа снижения влажности грунта земляного полотна позволяет удалить с грунта 30-60% влаги в капельно-жидком состоянии, без фазового перехода воды из одного агрегатного состояния в другое, без превращения ее в пар, что обеспечивает снижение удельных энергетических затрат процесса на 40%.

Комбинированный способ снижения влажности грунта земляного полотна при строительстве дорог, включающий обработку грунта проточным воздухом и СВЧ - электромагнитным полем, подводимым с помощью волноводного тракта через антенны, отличающийся тем, что обработка грунта осуществляется непрерывно без выемки со стороны воздушной среды с одновременным воздействием акустическим полем с уровнем интенсивности звука не менее 145 дБ, при этом антенны выполнены волноводно-щелевыми.



 

Похожие патенты:

Изобретение относится к области транспортного строительства и может быть использовано при устройстве автомобильных дорог и аэродромов. .

Изобретение относится к строительству автомобильных дорог, а именно к конструкциям дорожной одежды. .
Изобретение относится к строительным материалам, используемым при строительстве и укреплении внутрипромысловых дорог, обваловок оснований кустовых площадок, оснований свалок городского мусора и промышленных отходов, при строительстве и рекультивации иных промышленных объектов.
Изобретение относится к дорожному строительству и может использоваться для укрепления грунтов при устройстве оснований и покрытий автомобильных дорог. .

Изобретение относится к дорожно-строительным составам. .

Изобретение относится к дорожному строительству и может быть использовано при возведении дорожных одежд в зимнее время. .

Изобретение относится к области строительства и может быть использовано для укрепления слабых и заболоченных грунтов как природных, так и техногенных, промышленных отвалов и бытовых свалок, а также мест складирования обводненных, илистых, промышленных и бытовых отложений.

Изобретение относится к дорожному строительству и может быть использовано при возведении дорог с твердым покрытием. .

Изобретение относится к устройству асфальтобетонных покрытий при ремонте и капитальном ремонте (реконструкции) цементобетонных покрытий автомобильных дорог, взлетно-посадочных полос аэродромов, покрытий мостов, а также может быть использовано при новом строительстве автомобильных дорог высоких категорий
Изобретение относится к утилизации буровых шламов и может использоваться для получения универсальной смеси, предназначенной в качестве грунта, как для строительства дорог, так и для улучшения плодородных свойств почвы
Изобретение относится к утилизации отходов нефтедобычи и может быть использовано при строительстве и эксплуатации нефтегазопроводов, дорог, крупных систем электроснабжения и высоковольтных линий электропередач в качестве покрытия
Изобретение относится к области строительства, конкретно к золоминеральным составам для оснований дорожных одежд, и может быть использовано в дорожном строительстве

Изобретение относится к области дорожного строительства и может быть использовано для усиления слабого основания, повышения прочности и несущей способности дороги

Изобретение относится к способу локального укрепления грунтового основания под стыковочным узлом сборных покрытий из железобетонных плит автомобильных дорог, испытывающих большие напряжения от действия колес тяжелых транспортных средств

Изобретение относится к области дорожного строительства и может быть использовано при реконструкции и ремонте дорог

Изобретение относится к составам, основанным на грунте, укрепленном высококальциевыми золами уноса, содержащими до 15% свободного оксида кальция, и может быть использовано для устройства оснований дорожных одежд автомобильных дорог и покрытий переходного типа

Изобретение относится к области строительных технологий, а именно к технологиям упрочнения грунтовых оснований различных хозяйственных объектов: автомобильных дорог, хозяйственных площадок и т.п
Наверх