Высоковольтный полупроводниковый ограничитель напряжения (варианты)

Изобретение относится к области полупроводниковых ограничителей напряжения и может быть использовано при защите электронных устройств от перенапряжений, а также при конструировании и технологии создания названных приборов. Техническим результатом заявленного изобретения является создание ограничителя напряжения, конструкция которого не предполагает использование дорогостоящего монокристаллического материала, проста в изготовлении. Заявленная конструкция ограничителя обеспечивает пробивное напряжение порядка 40÷40000 В и при обратном токе 10÷10000 А. Сущность изобретения: высоковольтный полупроводниковый ограничитель напряжения содержит кремниевую подложку с последовательно сформированным на ее поверхности, по крайней мере, одним изолирующим слоем, обеспечивающим изоляцию подложки, и слоем толщиной 0,1-10 мкм из поликристаллического кремнийсодержащего материала, в котором выполнены чередующиеся, последовательно соединенные области р-n+-р-n+...р или n+-p-n+...n+-p-n+ или p-n+...p-n+ типов проводимости, полученные легированием указанного слоя на всю толщину до концентрации легирующей примеси не менее 1·1016 и 5·1016 см-3 соответственно в областях р и n+ типа проводимости, к крайним областям ограничителя подсоединены контакты. Предложены 2 варианта заявленного изобретения. 2 н. и 7 з.п. ф-лы, 4 ил.

 

Изобретение относится к области полупроводниковых ограничителей напряжения и может быть использовано при защите электронных устройств от перенапряжений, а также при конструировании и технологии создания названных приборов.

Известны кремниевые ограничители напряжения, у которых имеется кристалл с P-N-переходом (P-N-переходами) и контактами, оформленный в пластмассовый корпус, поглощаемая мощность и напряжение пробоя которых определяются рабочей площадью кристалла полупроводника и его удельного сопротивления, конструкцией кристалла с диффузионными слоями и толщиной базовой области [1]. Однако при использовании известных ограничителей напряжения существуют ограничения, по которым величины рассеиваемой (поглощаемой) мощности должны быть соизмеримы с конструкцией и размерами прибора, т.е. прибор может быть исполнен с недостаточной надежностью.

Также известен высоковольтный ограничитель напряжения [2], выполненный из N одинаковых последовательно включенных низковольтных р-n-р или n-р-n симметричных ограничителей напряжения, количество которых (N) определяется из соотношения, связывающего минимальную величину пробивного напряжения ограничителя, динамическое сопротивление одноэлементного ограничителя с минимальным пробивным напряжением, максимально допустимое значение амплитуды повторяющегося импульса обратного тока, который может протекать через ограничитель при его работе, и максимально допустимое значение величины напряжения, которое может возникать на ограничителе напряжения при протекании через него импульсного обратного тока с максимальным значением амплитуды, указанным выше, при этом минимальная величина пробивного напряжения каждого из N одинаковых последовательно включенных ограничителей обратно пропорциональна количеству ограничителей и прямо пропорциональна минимальной величине пробивного напряжения ограничителя. Этот ограничитель напряжения имеет высокое рабочее напряжения и способен пропускать импульсный ток в сотни ампер без существенного напряжения на нем, что не способны обеспечить другие ограничители. Однако этот ограничитель сложен в изготовлении, достаточно дорогостоящий и количество низковольтных диодов ограничено в связи с увеличением теплового сопротивления последнего диода.

Техническим результатом заявленного изобретения является создание ограничителя напряжения, конструкция которого не предполагает использование дорогостоящего монокристаллического материала, проста в изготовлении. Заявленная конструкция ограничителя обеспечивает пробивное напряжение порядка 40÷40000 В при обратном токе 10÷10000 А.

Технический результат достигается тем, что согласно первому варианту высоковольтный полупроводниковый ограничитель напряжения содержит кремниевую подложку с последовательно сформированным на ее поверхности, по крайней мере, одним изолирующим слоем, обеспечивающим изоляцию подложки, и слоем толщиной 0,1-10 мкм из поликристаллического кремнийсодержащего материала, в котором выполнены чередующиеся, последовательно соединенные области р-n+-р-n+...р или n+-p-n+...n+-р-n+ или p-n+...p-n+ типа проводимости, полученные легированием указанного слоя на всю толщину до концентрации легирующей примеси не менее 1·1016 и 5·1016 см-3 соответственно в областях р и n+ типа проводимости, к крайним областям подсоединены контакты.

На поверхности, по крайней мере, одной области р и/или n+ типа проводимости может быть выполнена металлизация вдоль всей длины области.

Под металлизацией может быть выполнена канавка глубиной не более толщины слоя поликристаллического кремнийсодержащего материала.

В качестве поликристаллического кремнийсодержащего материала может быть использован кремний или карбид кремния.

В качестве материала изолирующего слоя может быть использован SiO2 или Та2О5, или Si3N4 или изолирующий слой может быть сформирован из подслоев из указанных материалов.

Технический результат достигается также тем, что согласно второму варианту высоковольтный полупроводниковый ограничитель напряжения содержит изолирующую подложку из материала с коэффициентом термического расширения (3-9)·10-6 1/°С, со сформированным на ее поверхности слоем толщиной 0,1-10 мкм из поликристаллического кремнийсодержащего материала, в котором выполнены чередующиеся, последовательно соединенные области р-n+-р-n+...р или n+-p-n+...n+-p-n+ или р-n+...p-n+ типа проводимости, полученные легированием указанного слоя на всю толщину до концентрации легирующей примеси не менее 1·1016 и 5·1016 см-3 соответственно в областях р и n+ типа проводимости, к крайним областям подсоединены контакты.

На поверхности, по крайней мере, одной области р и/или n+ типа проводимости может быть выполнена металлизация вдоль всей длины области.

Под металлизацией может быть выполнена канавка глубиной не более толщины слоя поликристаллического кремнийсодержащего материала.

В качестве поликристаллического кремнийсодержащего материала может быть использован кремний или карбид кремния.

Конструкция заявленного высоковольтного полупроводникового ограничителя напряжения может быть схематично представлена на фигурах 1-4, где

на фигуре 1 изображена структура высоковольтного полупроводникового ограничителя напряжения, сформированного на кремниевой подложке,

на фигуре 2 изображена структура высоковольтного полупроводникового ограничителя напряжения, сформированного на изолирующей подложке,

на фигуре 3 изображена структура высоковольтного полупроводникового ограничителя напряжения, сформированного на кремниевой подложке с металлизацией и канавками в областях n+ типа проводимости,

на фигуре 4 изображена структура высоковольтного полупроводникового ограничителя напряжения, сформированного на изолирующей подложке с металлизацией и канавками в областях n+ типа проводимости.

На указанных фигурах приняты следующие обозначения:

1 - подложка,

2 и 3 - соответственно первый и последний низковольтные ограничители напряжения, составляющие структуру р-n+-р-n+...р или n+-р-n+-p-...n+-р-n+ или p-n+...р-n+ ограничителя,

4 - изолирующий слой (диэлектрический изолятор),

5 и 6 - выводы соответственно к первому и к последнему низковольтным ограничителям напряжения, составляющим структуру р-n+-р-n+...р или n+-p-n+-p-...n+-p-n+ или p-n+...p-n+ ограничителя,

7 - алюминиевая металлизация,

8 - разделительная канавка (меза-канавка под металлизацией).

В заявленном высоковольтном полупроводниковом ограничителе напряжения, также как и в известном аналоге, структура ограничителя представлена набором низковольтных ограничителей. При этом количество низковольтных ограничителей в заявленном изобретении не ограничена. Для их обозначения в сформированной структуре р-n+-р-n+...р или n+-р-n+-р-...n+-p-n+ или р-n+...р-n+ использованы следующие обозначения:

n11-p1-n12 - первый низковольтный ограничитель напряжения,

nn1-pn-nn2 - n-й (последний) низковольтный ограничитель напряжения.

Для изготовления заявленного высоковольтного полупроводникового ограничителя напряжения используют либо кремниевую подложку с последовательно сформированным на ее поверхности, по крайней мере, одним изолирующим слоем, в основном для ограничения напряжения до 1000 В, обеспечивающим изоляцию подложки, либо изолирующую подложку, например, из поликора или другого диэлектрического материала с коэффициентом термического расширения (3-9)·10-6 1/°С. В качестве материала изолирующего слоя используют SiO2 или Ta2O5, или Si3N4 или изолирующий слой формируют из подслоев из указанных материалов. Так, для получения двух подслоев SiO2 и Та2O5 на кремниевую подложку термически наращивают слой SiO2, после чего наносят Та, который окисляют до получения Та2О5.

На изолирующем слое или изолирующей подложке формируют слой толщиной 0,1-10 мкм из поликристаллического кремнийсодержащего материала, например кремния или карбида кремния, в котором выполняют чередующиеся, последовательно соединенные области р-n+-р-n+...р или n+-p-n+-p-...n+-р-n+ или p-n+...p-n+ типа проводимости, полученные легированием указанного слоя на всю толщину до концентрации легирующей примеси не менее 1·1016 и 5·1016 см-3 соответственно в областях р и n+ типа проводимости. К крайним областям ограничителя подсоединяют контакты и выводы.

На поверхности, по крайней мере, двух областей n+ типа проводимости выполнена металлизация вдоль всей длины соответствующей области, а под металлизацией выполнена канавка глубиной на всю толщину слоя поликристаллического кремнийсодержащего материала, т.е. на всю толщину соответствующей области (см. фиг.3 и 4).

Указанная металлизация, которая выполнена на поверхности, по крайней мере, одной области р и/или n+ типа проводимости вдоль всей длины области, под которой выполнена канавка глубиной не более толщины слоя поликристаллического кремнийсодержащего материала, приводит к уменьшению разброса тока.

Ограничитель напряжения заявленной конструкции не предполагает использование дорогостоящих материалов, прост в изготовлении и обеспечивает пробивное напряжение порядка 40÷40000В при обратном токе 10÷10000 А.

Литература

1. Б.В.Кондратьев, Б.В.Попов. Ограничители для защиты радиоэлектронной аппаратуры от перенапряжений. «Зарубежная электронная техника», 1983, в.2. М. ЦНИИ «Электроника», стр.87.

2. RU 2213392, 27.09.2003.

1. Высоковольтный полупроводниковый ограничитель напряжения, содержащий кремниевую подложку с последовательно сформированным на ее поверхности, по крайней мере, одним изолирующим слоем, обеспечивающим изоляцию подложки, и слоем толщиной 0,1-10 мкм из поликристаллического кремнийсодержащего материала, в котором выполнены чередующиеся, последовательно соединенные области р-n+-р-n+...р или n+-p-n+...n+-p-n+ или р-n+...p-n+ типа проводимости, полученные легированием указанного слоя на всю толщину до концентрации легирующей примеси не менее 1-1016 и 5-1016 см-3, соответственно, в областях р и n+ типа проводимости, к крайним областям подсоединены контакты.

2. Высоковольтный полупроводниковый ограничитель напряжения по п.1, отличающийся тем, что на поверхности, по крайней мере, одной области р и/или n+ типа проводимости выполнена металлизация вдоль всей длины области.

3. Высоковольтный полупроводниковый ограничитель напряжения по п.2, отличающийся тем, что под металлизацией выполнена канавка глубиной не более толщины слоя поликристаллического кремнийсодержащего материала.

4. Высоковольтный полупроводниковый ограничитель напряжения по п.1, отличающийся тем, что в качестве поликристаллического кремнийсодержащего материала использован кремний или карбид кремния.

5. Высоковольтный полупроводниковый ограничитель напряжения по п.1, отличающийся тем, что в качестве материала изолирующего слоя использован SiO2 или Та2O5 или Si3N4 или изолирующий слой сформирован из подслоев из указанных материалов.

6. Высоковольтный полупроводниковый ограничитель напряжения, содержащий изолирующую подложку из материала с коэффициентом термического расширения (3-9)·10-6 1/°С, со сформированным на ее поверхности слоем толщиной 0,1-10 мкм из поликристаллического кремнийсодержащего материала, в котором выполнены чередующиеся, последовательно соединенные области р-n+-р-n+...р или n+-p-n+...n+-p-n+ или р-n+...p-n+ типа проводимости, полученные легированием указанного слоя на всю толщину до концентрации легирующей примеси не менее 1·1016 и 5·1016 см-3, соответственно, в областях р и n+ типа проводимости, к крайним областям подсоединены контакты.

7. Высоковольтный полупроводниковый ограничитель напряжения по п.6, отличающийся тем, что на поверхности, по крайней мере, одной области р и/или n+ типа проводимости выполнена металлизация вдоль всей длины соответствующей области.

8. Высоковольтный полупроводниковый ограничитель напряжения по п.7, отличающийся тем, что под металлизацией выполнена канавка глубиной не более толщины слоя поликристаллического кремнийсодержащего материала.

9. Высоковольтный полупроводниковый ограничитель напряжения по п.6, отличающийся тем, что в качестве поликристаллического кремнийсодержащего материала использован кремний или карбид кремния.



 

Похожие патенты:

Изобретение относится к области мощных полупроводниковых приборов и может быть использовано при конструировании высоковольтных импульсных полупроводниковых симметричных ограничителей напряжения с малым значением динамического сопротивления и увеличенной энергией лавинного пробоя.

Изобретение относится к области мощных полупроводниковых приборов и может быть использовано при конструировании полупроводниковых симметричных ограничителей напряжения с малым значением динамического сопротивления.

Изобретение относится к области электронной техники, в частности, к конструированию и технологии изготовления выпрямительных полупроводниковых диодов с p-п переходами, и может быть использовано в электронной промышленности.

Изобретение относится к электронной технике, полупроводниковой электронике, СВЧ-полупроводниковым диодам с динамическим отрицательным сопротивлением. .

Изобретение относится к промышленной электронике и может быть использовано в электрических устройствах, эксплуатируемых в экстремальных условиях: космос, повышенная радиация, высокие температуры

Изобретение относится к области конструирования полупроводниковых приборов и может быть использовано в производстве мощных кремниевых диодов с улучшенной термостабильностью

Изобретение относится к области силовой промышленной электронной техники

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока и преобразования ВЧ-сигнала в постоянное напряжение в источниках питания радиоаппаратуры, радиоизмерительных приборах и системах

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока и преобразования ВЧ-сигнала в постоянное напряжение в источниках питания радиоаппаратуры, радиоизмерительных приборах и системах

Изобретение относится к технологическим процессам производства компонентов микроэлектроники и вычислительных схем

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока в радиоаппаратуре, радиоизмерительных приборах и системах

Изобретение относится к импульсной технике и может быть использовано в источниках питания полупроводниковых лазеров, мощных полупроводниковых светодиодов, диодов Ганна, системах сверхширокополосной локации

Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов

Изобретение относится к полупроводниковым приборам, в частности, к формированию самосовмещенных высоковольтных диодов
Наверх