Астровизирное устройство

Изобретение относится к космонавтике и, в частности, к системам астрокоррекции азимута пуска ракет-носителей. Предлагаемое устройство служит для коррекции по азимуту пуска положения гиростабилизированной платформы (ГСП) системы управления ракеты-носителя и содержит размещенные на указанной платформе оптический объектив и фоточувствительную часть. Последняя состоит из по меньшей мере двух фотоприемников (ФП) с различными спектральными характеристиками и сканирующего элемента, выполненного в виде пьезоэлемента с закругленным отражающим торцом. При малом колебании сканирующего элемента любой луч после объектива, отражаясь от закругленной поверхности, попадает на одиночный ФП. Этот момент зависит от положения звезды относительно визирной оси объектива и траектории развертки. При стабильной развертке момент появления сигнала от ФП внутри периода развертки жестко связан с положением указанного луча, а положение визирной оси фиксировано при размещении устройства на ГСП. При использовании двух ФП с различными спектральными характеристиками появляется возможность корректировать положение ГСП по двум спектрально разным навигационным звездам. Техническим результатом изобретения является снижение массы и габаритов астровизирного устройства, а также повышение надежности его работы. Появляется возможность устанавливать это устройство непосредственно на гиростабилизированную платформу системы управления ракеты-носителя и доприцеливать ракету на активном участке полета после сравнительно грубого прицеливания по азимуту пуска во время предпусковой подготовки. В свою очередь это позволяет упростить и удешевить наземную систему прицеливания, а также устранить погрешности в азимуте пуска, связанные с разрывом по времени между запуском двигательной установки первой ступени ракеты и ее отрывом от пускового устройства. 2 ил.

 

Изобретение относится к космонавтике, в частности к системам астрокоррекции азимута пуска ракет-носителей.

Целью изобретения является уменьшение массы и габаритов астровизирного устройства (АВУ) и увеличение надежности его работы, что позволит устанавливать АВУ непосредственно на гиростабилизированнную платформу (ГСП) системы управления ракеты-носителя и доприцеливать ракету на активном участке полета после сравнительно грубого прицеливания по азимуту пуска во время предпусковой подготовки. Это позволит также упростить и удешевить наземную систему прицеливания и устранить неустранимые при любом наземном прицеливании погрешности в азимуте пуска, связанные с разрывом по времени между запуском двигательной установки первой ступени ракеты и ее отрывом от пускового устройства.

Сущность изобретения заключается в том, что фоточувствительная часть (ФЧЧ) АВУ выполняется на основе сканирующего пьезоэлемента и одиночного фотоприемника.

Аналогом является АВУ с использованием голографического метода конструирования (см. Математическое моделирование процессов и систем на ЭВМ: В.В.Малинин, ЦИТСГГА, 2003, http://svarka.susu.ас.ru/library/study/mathmodel/index.html. - раздел 8, п.8.1.3.).

Прототипом выбрано АВУ с ПЗС - матрицей в роли фотоприемника (см. Математическое моделирование процессов и систем на ЭВМ: В.В.Малинин, ЦИТ СГГА, 2003, http://svarka.susu.ac.ru/library/study/mathmodel/index.html. - раздел 8, п.8.1.3.).

Эти варианты конструкции АВУ имеют ряд недостатков, среди которых во-первых, наличие механических подвижных частей, что уменьшает надежность работы устройства, во-вторых необходимость постоянного температурного контроля устройств, что приводит к увеличению массы и габаритов и, в-третьих сложность обработки полученного изображения или видеосигнала.

Отличие предлагаемого устройства от прототипа заключается в исполнении ФЧЧ, которая содержит сканирующий элемент и по меньшей мере два фотоприемника (ФП). Сканирующий элемент выполнен в виде пьезоэлемента, закругленная отражающая часть которого применена в качестве усилителя смещения отраженного луча, что аналогично устройству строчной двухкоординатной развертки (см. SU 1219995 А (Попов В.Д. и др.), 1986 г.). В этом случае при малом колебании сканирующего элемента любой луч после объектива, отражаясь от закругленной поверхности, попадает на ФП в момент, связанный с положением оси объектива относительно направления на звезду и характеристиками развертки. Сканирование пьезоэлемента основывается на его основном свойстве изменять геометрические размеры под действием напряжения.

АВУ устроено и работает следующим образом.

Изображение звезды 1 из звездного поля формируется объективом 2 (фиг.1) и направляется на ФП 3 (условно показан один из ФП). В фокальной плоскости объектива 2 находится сканирующая сферическая отражающая поверхность 4, закрепленная на пьезокерамическом элементе 5. Сканирование создается вторичным пьезоэффектом, возникающим под действием двух периодических переменных напряжений Ux и Uy, приложенных через обкладки к пьезокерамическому элементу и соответствующих осям Х и У развертки.

В результате развертки лучи от звезды 1, прошедшие через объектив 2, в какие-то моменты падают на входы ФП 3. Эти моменты связаны с положением луча от звезды относительно оси объектива и траекторией развертки. Так как развертка стабильна (стабильны Ux и Uy), то момент появления сигнала от ФП внутри периода развертки жестко связан с положением луча относительно визирной оси объектива, а положения оси объектива фиксировано размещением АВУ на ГСП.

Фиг.2 поясняет работу АВУ относительно одной плоскости, например, проходящей через визирную ось объектива 2 и ось Х (или У) развертки при различных положениях звезды (1, 1', 1''). График поясняет появление сигнала Uф на выходе фотоприемника 3. Здесь Up - напряжение развертки, Uф1, Uф2, и Uф3 - импульс засветки фотоприемника при соответствующем положении звезды и отражающей поверхности пьезокерамического элемента.

При использовании, в частности, двух ФП с различными спектральными характеристиками (например, в голубой и красной частях спектра) обеспечивается возможность корректировать положение ГСП по двум навигационным звездам, и либо просто повысить точность коррекции азимута, либо корректировать положение ГСП по двум осям, а также расширить количество возможных навигационных звезд.

Астровизирное устройство для коррекции положения гиростабилизированной платформы системы управления ракеты-носителя по азимуту пуска, содержащее размещенные на указанной платформе оптический объектив и фоточувствительную часть, отличающееся тем, что фоточувствительная часть состоит из по меньшей мере двух фотоприемников с различными спектральными характеристиками и сканирующего элемента, выполненного в виде пьезоэлемента с закругленным отражающим торцом.



 

Похожие патенты:

Изобретение относится к сканирующим устройствам и может быть использовано для построения изображения подстилающей поверхности с борта космического аппарата одновременно в множестве зон спектра оптического излучения.

Изобретение относится к области оптического приборостроения, точной механике и может найти применение в качестве устройства управления по двум пространственным координатам различными механическими или оптическими элементами для изменения направления излучения как когерентных, так и обычных источников света.

Изобретение относится к технике оптических систем обзора и поиска. .

Изобретение относится к измерительной технике. .

Изобретение относится к области сканирования формы поверхностей, а именно криволинейных поверхностей, используемых для создания форм в авиастроении, судостроении, автомобилестроении и т.п.

Изобретение относится к области оптико-механического и оптико-электронного приборостроения и может быть использовано в устройствах сканирования изображений в тепловизионных приборах ночного видения.

Изобретение относится к оптико-электронным устройствам и может быть использовано в управлении пространственным положением светового пучка в различных оптико-электронных приборах, например в тепловизорах, при визуализации невидимого человеческому глазу теплового поля.

Изобретение относится к космической технике и может быть использовано при создании спутниковых систем позиционирования объектов на земной поверхности. .

Изобретение относится к информационным спутниковым системам и может быть использовано для создания глобального радионавигационного поля для морских, наземных, воздушных, а также космических потребителей.

Изобретение относится к космической технике и, в частности, к методам и средствам обеспечения привязки времени регистрации наблюдаемых явлений на борту космического аппарата (КА) к местному времени на Земле.

Изобретение относится к области навигации летательных аппаратов (ЛА) преимущественно при полетах в сложных метеоусловиях. .

Изобретение относится к мореходной астрономии и может быть использовано для определения координат места по наблюдению светил. .

Изобретение относится к авиационному приборостроению и может быть использовано в составе бортового оборудования летательных аппаратов для решения задач наведения, прицеливания и применения боевых средств.

Изобретение относится к авиационному приборостроению и может быть использовано в составе бортового оборудования летательных аппаратов, обеспечивающего их управление и наведение.

Изобретение относится к авиационному приборостроению и может быть использовано в составе бортового самолетного оборудования, обеспечивающего выполнение задач навигации и целеуказания.

Изобретение относится к авиационному приборостроению и может быть использовано в составе бортового оборудования летательных аппаратов, обеспечивающего их навигацию, управление и наведение.

Изобретение относится к электромеханическим исполнительным органам управления угловым положением космических летательных аппаратов (КА) и может быть использовано для создания систем опор в невесомости при проведении разворотов и фиксации КА.

Изобретение относится к космонавтике и, в частности, к системам астрокоррекции азимута пуска ракет-носителей

Наверх