Способ раскатки гильз

Изобретение относится к обработке металлов давлением, а именно к технологии раскатки гильзы в многовалковых станах винтовой прокатки (стан Асселя), и может быть использовано при производстве тонкостенных труб на трубопрокатных агрегатах, оснащенных трехвалковыми раскатными станами винтовой прокатки. Способ раскатки гильз на оправке в многовалковом стане поперечно-винтовой прокатки включает захват гильзы, ее редуцирование до полного прилегания к оправке с некоторым обжатием стенки, интенсивное обжатие до конечной толщины стенки трубы и калибровку по диаметру и стенке. При этом интенсивное обжатие осуществляют последовательно путем расклинивания наружной поверхности гильзы в осевом направлении, формирования на ней по меньшей мере одного гребня и его раскатки. Кроме того, интенсивное обжатие стенки осуществляют в несколько приемов в зависимости от степени утонения стенки гильзы. Изобретение устраняет образование концевого раструба, повышает стойкость валков, позволяет освоить производство тонкостенных и, главное, высокоточных труб на трубопрокатных агрегатах, оснащенных трехвалковыми раскатными станами винтовой прокатки. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к обработке металлов давлением, а именно к технологии раскатки гильзы в многовалковых станах винтовой прокатки (стан Асселя), и может быть использовано при производстве тонкостенных труб на трубопрокатных агрегатах, оснащенных трехвалковыми раскатными станами винтовой прокатки.

Известен способ раскатки гильз на трехвалковом стане винтовой прокатки (Ф.А.Данилов, А.З.Глейберг, В.Г.Балакин «Горячая прокатка труб». М.: Металлургия, 1962 г., с.398-408), включающий захват гильзы, ее редуцирование по диаметру до полного прилегания к оправке с некоторым незначительным обжатием стенки, интенсивное обжатие стенки гильзы до значений конечной толщины и калибровку стенки и наружного диаметра. При этом интенсивное обжатие стенки гильзы, до 90%, осуществляют коротким, т.н. гребневым участком, высота которого варьируется в зависимости от размера гильз. Основным достоинством способа является возможность производить трубы с жесткими допусками по геометрическим размерам: толщине стенки в пределах ±6,0% от номинальной толщины стенки и диаметру в пределах ±0,5% от номинального размера диаметра, что в 2-3 раза превышает точность размеров труб, получаемых на прочих типах раскатных станов - автоматическом, пилигримовом, непрерывном и реечном. Способ обеспечивает качественный прокат труб с отношением диаметра к толщине стенки (D/S) от 4 до 11, являющимся критическим. При отношении D/S большем 11 на концах трубы появляются треугольные раструбы, при меньшем - образование граненности и закат оправки. Основным недостатком способа является ограниченность сортамента прокатываемых труб, главным образом по толщине стенки, невозможность проката труб со средней толщиной стенки при D/S>11÷20 и тонкостенных труб при D/S>20÷25 и выше.

Известен способ винтовой прокатки труб на трехвалковом стане, в котором осуществляют обжим переднего конца гильзы гребнем валка на утоненном конце длинной оправки, не более высоты гребня, с разведением валков на величину не более высоты гребня в момент приближения заднего конца гильзы к гребню (а. с. СССР №358041, В21В 19/06, опубл. 03.11.72 г.). Недостатком способа является трудность выполнения калибровки или профилирования оправки, удовлетворяющей условиям производства широкого сортамента труб, поскольку оправка используется для проката труб различного сортамента по толщине, а гильза не фиксируется на оправке в одном положении. Процесс сведения и разведения валков при прокатке заднего конца гильзы связан с необходимостью коренной модернизации и автоматизации стана. Кроме того, способ предполагает наличие утолщенного заднего конца трубы вместо раструба, который так же, как и раструб, должен удаляться вместе с концевой обрезью, но большая толщина стенки заднего конца трубы определяет при этом и больший расходный коэффициент металла.

Известен способ раскатки гильз в трехвалковом стане винтовой прокатки, в котором предложено переформировать получивший искажение в процессе интенсивной деформации профиль поперечного сечения трубы из трехгранного в цилиндрический в т.н. зоне «восстановления», которая представляет собой выполненную в теле валка выемку меньшего диаметра, расположенную после зоны интенсивного обжатия (О.А.Пляцковский, А.А.Спирин, Б.Г.Павловский и др. «Расширение технологических возможностей трубопрокатных агрегатов с трехвалковыми раскатными станами». «Черметинформация», 1977 г., №23).

Однако эффект для прокатки задних концов труб оказался практически не ощутим, и авторы вынуждены рекомендовать использовать предложенное техническое решение в сочетании с уже известным способом использования специальной формы оправки и разведения валков в момент прохождения заднего конца трубы.

Известно осуществление прокатки тонкостенных труб в трехвалковом раскатном стане посредством комбинирования прокатки концевых участков без оправки с прокаткой основной части гильзы на оправке. Эту сложную программу осуществляют автоматически с помощью сложного устройства (Г.Н.Гуляев и Л.И.Спиваковский «Производство труб в США». Сборник «Черметинформация», 1974 г., 124 с.).

Данный способ сложен и также связан с наличием повышенных концевых отходов.

Наиболее близким техническим решением, принятым за прототип, является способ раскатки гильз в трехвалковом стане поперечно-винтовой прокатки, включающий захват гильзы, ее редуцирование до полного прилегания к оправке с некоторым незначительным обжатием стенки, интенсивное обжатие до конечной толщины стенки трубы, калибровку стенки и наружного диаметра трубы (Ф.А.Данилов, А.З.Глейберг, В.Г.Балакин «Горячая прокатка труб». М.: Металлургия, 1962 г., с.398-408).

Основным и существенным недостатком известного способа является ограничение в сортаменте прокатываемых труб. Способ можно использовать только для производства толстостенных труб с отношением D/S менее 11÷11,5. При прокатке относительно тонкостенных труб с D/S более 10÷11 интенсивно увеличивается поперечная деформация. Если в установившемся режиме прокатки рост поперечной деформации ограничивает наличие т.н. «жесткого» конца, т.е. участков гильзы, находящихся в данный момент перед гребнем, то при прокатке заднего конца трубы, когда сдерживающий фактор отсутствует, поперечная прокатка вызывает интенсивный рост диаметра трубы, переполнение калибра, потерю устойчивости профиля, образование концевого треугольного раструба и прекращение процесса прокатки.

Техническая задача, решаемая изобретением, заключается в устранении образования концевого раструба и освоении производства тонкостенных и, главное, высокоточных труб на трубопрокатных агрегатах, оснащенных трехвалковыми раскатными станами винтовой прокатки, а также повышении стойкости валков.

Поставленная задача решается за счет того, что в способе раскатки гильз на оправке в многовалковом стане поперечно-винтовой прокатки, включающем захват гильзы, ее редуцирование до полного прилегания к оправке с некоторым обжатием стенки, интенсивное обжатие до конечной толщины стенки трубы, калибровку по диаметру и стенке, согласно изобретению интенсивное обжатие осуществляют последовательно путем расклинивания наружной поверхности гильзы в осевом направлении, формирования на ней по меньшей мере одного гребня и его раскатки. Кроме того, интенсивное обжатие стенки осуществляют в несколько приемов в зависимости от степени утонения стенки гильзы.

Сущность изобретения состоит в том, что интенсивное обжатие стенки гильзы гребневым участком валка осуществляют не полностью до конечной толщины стенки, а примерно наполовину путем расклинивания наружной поверхности гильзы в осевом направлении и формирования на поверхности гильзы по меньшей мере одного волнообразного гребня, который затем раскатывают до конечной толщины стенки, завершая вторую половину деформации стенки.

Интенсивное обжатие стенки может быть осуществлено в несколько приемов в зависимости от степени утонения стенки гильзы.

Изобретение поясняется чертежами, где на фиг.1 схематически показан механизм процесса раскатки гильзы по действующему способу, а на фиг.2 - по предлагаемому.

На фиг.1 и 2 в разрезе изображены валок 1 и оправка 2 стана поперечно-винтовой прокатки в процессе раскатки гильзы 3.

При осуществлении способа по прототипу (фиг.1) интенсивную деформацию стенки осуществляют гребневым участком II. Особенностью процесса является то, что гребневым участком осуществляют около 90% всего обжатия стенки гильзы. Вместе с примыкающим к гребню участком I редуцирования гильзы, на котором также осуществляют частичное обжатие стенки, полное обжатие гильзы по стенке сосредоточено на сравнительно коротком участке очага деформации, которыми являются конец I участка и гребневой участок II. Вторая особенность известного способа состоит в неразрывности контакта металла с валками и оправкой как на участке интенсивного обжатия стенки II-IV, так и смежного с ним участка редуцирования I гильзы до посада гильзы на оправку, на котором также осуществляют частичное обжатие стенки. Неразрывность контакта металла с валками и оправкой, а также большие обжатия обусловливают действие осевых подпирающих сил трения (показано стрелками), препятствующих осевому течению металла и инициирующих поперечную деформацию, особенно в зоне II интенсивного обжатия гильзы. Процесс раскатки характеризуется большими удельными усилиями металла на прокатный инструмент, особенно в зоне интенсивного обжатия гильзы, а также развитием преимущественно поперечной деформации, ответственной за образование концевого раструба.

В результате большого обжатия и интенсивного развития поперечной деформации профиль поперечного сечения трубы на участке интенсивного обжатия стенки приобретает форму, близкую к треугольной (фиг.1, сеч.А-А). Устойчивость профиля поддерживается наличием недеформируемого сечения перед гребнем, выполняющего функцию «жесткого» конца. Избыток поперечной деформации на гребневом участке сопровождается локальным утолщением стенки трубы от действия внеконтактной деформации (фиг.1, сеч.А-А). Процесс раскатки энергоемок из-за циклически повторяющихся операций утонения стенки в месте контакта и утолщения стенки от внеконтактной деформации. Прокатка заднего конца трубы при отсутствии «жесткого» конца заканчивается интенсивной поперечной раскаткой, потерей устойчивости профиля с образованием концевого треугольного раструба и преждевременным прекращением процесса.

Механизм деформирования гильзы в предложенном способе представлен на фиг.2. Во-первых, расклинивающее действие клинового участка II при отсутствии подпирающих сил трения на разгрузочном участке III, выполняющего одновременно функцию формирования гребневого профиля, инициирует осевую деформацию и уменьшает поперечную. Во-вторых, примерно двукратные уменьшения обжатия на клиновом участке также способствуют уменьшению поперечной деформации. На последующем деформационном участке IV, в котором осуществляют осадку сформированного на участке III гребня, процесс проходит также с превалирующим течением металла в осевом направлении, поскольку поперечное сечение гребня сориентировано перпендикулярно к оси прокатки. Поэтому на обжимных участках очага деформации, клиновом II и раскатном IV, форма поперечного сечения гильзы-трубы близка к круглой (фиг.2, сеч.А-А).

Термин «гильза-труба» выбран исходя из того факта, что в очаге деформации между II и IV участками сечение приобретает промежуточную толщину стенки: по вершине гребня еще сохраняет номинальную толщину стенки гильзы, а по впадине уже приобретает номинальную толщину стенки трубы. При прокатке заднего конца роль сдерживающего фактора или «жесткого» конца принимает на себя участок гильзы - трубы с кольцевым гребнем, сформированным в свободной зоне очага деформации III. Раскатка самого гребня, как уже было отмечено, сопровождается интенсивным течением металла в осевом направлении, причем тем сильнее, чем тоньше стенка трубы. Эти же особенности и отличия позволяют изготовлять тонкостенные трубы путем двукратного или многократного повторения операций расклинивания и раскатки гребней в очаге деформации, т.е. осуществлять многоступенчатый процесс раскатки гильзы, что не представляется возможным в известном способе. Количество ступеней деформации лимитируется длиной бочки валка.

Таким образом, механизм деформирования гильзы в предложенном способе обеспечивает реальные условия для исключения образования концевого раструба и прокатки тонкостенных и одновременно высокоточных труб на прокатных агрегатах, оснащенных трехвалковыми раскатными станами винтовой прокатки. Кроме этого, предложенный способ прокатки позволит:

- уменьшить расходный коэффициент металла,

- снизить усилие металла на прокатный инструмент,

- повысить эксплуатационную стойкость валков и оправок раскатного трехвалкового стана за счет снижения удельных усилий на инструмент,

- улучшить качество поверхности труб за счет уменьшение винтового следа и порезов на внутренней поверхности труб,

- стабилизировать технологию операции раскатки и последующего редуцирования труб за счет устранения раструба. В качестве примера приведена технология изготовления тонкостенной трубы размером 76×5,5 мм (D/S=14,3) из гильзы размером 102×15 мм, прошитой из заготовки диаметром 105 мм. Настроечные параметры прошивного стана были следующими:

расстояние между валкамиb=86 мм
расстояние между линейкамиа=102 мм
диаметр оправкиdо=66 мм
длина оправкиlо=148 мм
выдвижение оправки за пережимС=94 мм
обжатие в пережимеUп=17,8%
размер гильзы102×15 мм
коэффициент вытяжкиμ=2,13

Полученную гильзу раскатывают в трехвалковом стане винтовой прокатки в трубу размером 76×5,5 мм.

Конструктивные размеры функциональных участков валка, а также настроечные параметры трехвалкового стана составляли:

угол выходного конусаα=2°30'
длина выходного конусаl1=110 мм
высота клинаhк=8 мм
ширина клина у основанияВк=24 м
диаметр оправкиdо=65 мм
угол подачи валковβ=10°
длина бочки валкаLб=260 мм
коэффициент вытяжкиμ=3,38

В процессе расклинивания в свободной зоне формировался гребень высотой 8 мм и шириной основания 24 мм, который затем полностью раскатывался до конечной толщины стенки трубы 5,5 мм. Концевые раструбы отсутствовали. Качество поверхности труб удовлетворительное. При раскатке гильзы в валках действующей калибровки процесс прекращался из-за потери устойчивости профиля в калибре и образования треугольного раструба на конце трубы.

Использование предлагаемого технического решения обеспечивает реальную возможность освоения производства высокоточных тонкостенных труб с соотношением D/S более 11 на трубопрокатных агрегатах, оснащенных раскатными трехвалковыми станами, а также снижение энергосиловых параметров процесса раскатки, повышение стойкости прокатного инструмента и улучшение качества поверхности труб.

1. Способ раскатки гильз на оправке в многовалковом стане поперечно-винтовой прокатки, включающий захват гильзы, ее редуцирование до полного прилегания к оправке с некоторым обжатием стенки, интенсивное обжатие до конечной толщины стенки трубы, калибровку по диаметру и стенке, отличающийся тем, что интенсивное обжатие стенки гильзы осуществляют клиновым участком валка на половину конечной толщины стенки путем расклинивания наружной поверхности гильзы в осевом направлении и формирования на ней по меньшей мере одного волнообразного гребня, который раскатывают до конечной толщины стенки на последующем деформационном участке.

2. Способ по п.1, отличающийся тем, что интенсивное обжатие стенки осуществляют в несколько приемов в зависимости от степени утонения стенки гильзы.



 

Похожие патенты:

Изобретение относится к обработке металлов давлением, в частности для уменьшения диаметра, обеспечения круглости или выпрямления трубы путем прокатки. .

Изобретение относится к области обработки металлов давлением и касается технологии получения ребристых труб поперечно-винтовой прокаткой и может быть использовано на трехвалковых станах.

Изобретение относится к машиностроению, а именно к холодной раскатке деталей типа тел вращения, предназначенной для придания им заданной геометрической формы и размеров.

Изобретение относится к трубопрокатному производству, точнее к винтовой раскатке труб. .
Изобретение относится к трубопрокатному производству и может быть использовано при производстве бесшовных горячекатаных труб винтовой прокаткой. .

Изобретение относится к трубопрокатному производству. .

Изобретение относится к трубопрокатному производству и касается инструмента стана винтовой прокатки. .

Изобретение относится к трубопрокатному производству и предназначено для изготовления тонкостенных труб в широком диапазоне вшгтовой прокаткой. .

Изобретение относится к области обработки металлов давлением и может быть использовано на современньж установках, в состав которых входят прошивные прессы и станы-элонгаторы.
Изобретение относится к трубопрокатному производству и касается получения горячекатаных толстостенных труб винтовой прокаткой
Изобретение относится к трубопрокатному производству, а именно к получению толстостенных труб винтовой прокаткой

Изобретение относится к трубопрокатному производству и может быть использовано при производстве бесшовных горячекатаных труб из стали марки 10Х9МФБ-Ш для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара. Полые слитки ЭШП растачивают и обтачивают в полые слитки-заготовки размером 500хвн.320х3200±50 мм. Слитки-заготовки нагревают до температуры 1180-1200оС и прокатывают на ТПУ 8-16” с пилигримовыми станами в передельные горячекатаные трубы размером 325х15х20300-20700 и 325х18х17600-18300 мм. После отрезки технологических отходов пилой горячей резки передельные горячекатаные трубы разрезают на краты, правят на шестивалковой правильной машине, проводят термическую обработку, приемку и прокатку на стане ХПТ 450 в товарные холоднокатаные трубы размером 299х10-15 мм. Обеспечивается повышение механических свойств и точность геометрических размеров труб. 2 з.п. ф-лы, 1 табл.

Изобретение относится к трубопрокатному производству, а именно к способу производства труб для энергетического оборудования с суперсверхкритическими параметрами пара. Способ производства бесшовных горячедеформированных котельных и паропроводных труб размером 530×30 - 75 мм из жаропрочной стали марки 10Х9К3В2МФБР-Ш характеризуется тем, что трубы производят путем выплавки электрошлаковым переплавом полых слитков размером 660×вн.260-280×2100±50 мм, расточки и обточки слитков в полые слитки-заготовки размером 640×вн.280-360×2100±50 мм, нагрева слитков-заготовок до температуры 1210-1230°C, прошивки-раскатки слитков-заготовок в стане поперечно-винтовой прокатки в гильзы размером 660×вн.505-415×3350-2800 мм, прокатки гильз на пилигримовых станах в трубы размером 530×30-75×6700-3500 мм, отрезки пилой горячей резки технологических отходов, правки, термической обработки, травления, ультразвукового контроля и приемки труб. Обеспечивается снижение расхода металла и повышение производительности ТПУ с пилигримовыми станами. 1 табл.

Изобретение относится к трубопрокатному производству. Рабочая клеть стана поперечно-винтовой прокатки содержит станину, составленную из основания с крышкой и расположенными в них через 120° гнездами под кассеты с валками, дополнительное гнездо в крышке под верхний линейкодержатель и нижний линейкодержатель в основании. Повышение жесткости клети при работе по двухвалковой схеме прокатки обеспечивается за счет того, что основание станины снабжено на плоскости разъема упором, несущим резьбовую втулку и винтовой стержень с распорной втулкой и контргайкой. Верхний линейкодержатель снабжен кронштейном, контактирующим с винтовым стержнем. В одном из гнезд основания выполнены две взаимно перпендикулярные плоскости для крепления нижнего линейкодержателя. Рабочая клеть стана позволяет увеличить долговечность деталей за счет того, что винтовой стержень, упираясь в кронштейн на верхнем линейкодержателе, воспринимает тангенциальные усилия, передаваемые при прокатке на этот линейкодержатель, а крепление нижнего линейкодержателя в гнезде основания станины по двум взаимно перпендикулярным плоскостям обеспечивает жесткость очага деформации. 3 ил.

Изобретение относится к трубопрокатному производству, а именно к способу производства бесшовных горячедеформированных котельных и паропроводных труб размером 465×25-75 мм из стали 10Х9К3В2МФБР-Ш для энергетического оборудования с суперсверхкритическими параметрами пара. Способ характеризуется тем, что трубы производят путем выплавки электрошлаковым переплавом полых слитков размером 660×вн.180-280×2100±50 мм с отношением диаметра к толщине стенки D/S=2,75-3,50, большие значения которого относятся к полым слиткам с меньшими толщинами стенок, расточки и обточки слитков в полые слитки-заготовки размером 640×вн.200-300×2100±50 мм с отношением диаметра к толщине стенки D/S=2,9-3,8, большие значения которого относятся к слиткам-заготовкам с меньшими толщинами стенок, нагрева слитков-заготовок до температуры 1200-1220°С, прошивки-раскатки слитков-заготовок в стане поперечно-винтовой прокатки в гильзы размером 640×вн.340-440×3120-2520 мм с вытяжками µр, равными 1,45-1,23, и подъемом по диаметру δ=0, на оправках диаметром 425,400, 375, 350 и 325 мм в зависимости от геометрических размеров гильз, прокатки гильз на пилигримовых станах с вытяжками µп, равными 4,57-2,38, в трубы размером 465×25-75×11500-5000 мм с суммарной вытяжкой µΣ=µрµп, равной 6,63-2,93, большие значения которых относятся к трубам с меньшими толщинами стенок, и обжатием по диаметру Δ=26,6%, отрезки пилой горячей резки технологических отходов - пилигримовых головок и затравочных концов, правки, термической обработки, травления, ультразвукового контроля и приемки труб. Обеспечивается снижение расхода металла, повышение производительности ТПУ 8-16" с пилигримовыми станами. 1 табл.

Изобретение относится к трубопрокатному производству, а именно к способу производства бесшовных труб размером 325×26-45 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из стали марки 10Х9МФБ-Ш. Способ включает выплавку полых слитков электрошлаковым переплавом, расточку и обточку полых слитков в полые слитки-заготовки размером 500хвн.160×2100±50 мм, нагрев слитков-заготовок в методической печи до температуры 1160-1180°С, прошивку-раскатку в стане поперечно-винтовой прокатки в гильзы размером 500хвн.290×2700-2860 мм или 500хвн.275×2580-2710 мм на оправках диаметром 275 и 260 мм с вытяжками µ=1,33 и µ=1,26 размер в размер по наружному диаметру, прокатку гильз на ТПУ 8-16" с пилигримовыми станами в товарные трубы размером 325×26×11000-11800 - 325×35×8800-9400 мм и 325×36×8500-9100 - 325×45×7900-8300 мм с вытяжками, соответственно, от µ=4,89 до µ=3,81 и от µ=3,91 до µ=3,06, обжатием по диаметру Δ=34,0% и с подачами гильз в очаг деформации, соответственно, m=20-24 и m=22-26 мм, отрезку технологических отходов в виде затравочных концов и пилигримовых головок пилой горячей резки, правку, термическую обработку, при необходимости ремонт, ультразвуковой контроль и приемку труб с допуском по диаметру +1,25/-1,0% и толщине стенки +20,0/-5,0%. Обеспечивается снижение расходного коэффициента металла и повышение производительности ТПУ 8-16" с пилигримовыми станами. 1 табл.

Изобретение относится к трубопрокатному производству, а именно к способу производства бесшовных труб размером 325×16-25 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из стали марки 10Х9МФБ-Ш. Способ включает выплавку полых слитков электрошлаковым переплавом, расточку и обточку полых слитков в слитки-заготовки размером 500×вн.320×3200±50 мм или 500×вн.300×3200±50 мм, нагрев слитков-заготовок в методической печи до температуры 1170-1190°С, прокатку на ТПУ 8-16″ с пилигримовыми станами в товарные трубы размером 325×16×18200-18900-325×25×13400-13800 мм с вытяжками от µ=6,91 до µ=4,87, обжатием по диаметру Δ=34,0% и с подачами слитков-заготовок в очаг деформации m=18-22 мм, отрезку технологических отходов в виде затравочных концов и пилигримовых головок пилой горячей резки, резку труб на две трубы равной длины, правку, термическую обработку, при необходимости ремонт, ультразвуковой контроль и приемку труб с допуском по диаметру +1,25/-1,0% и толщине стенки +20,0/-5,0%. Обеспечивается снижение расходного коэффициента металла и повышение производительности ТПУ 8-16″ с пилигримовыми станами. 1 табл.
Изобретение относится к трубопрокатному производству, а именно к способу производства бесшовных труб размером 426×15-30 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из слитков электрошлакового переплава стали марки 10Х9МФБ-Ш. Способ включает выплавку полых слитков электрошлаковым переплавом, механическую обработку - расточку и обточку полых слитков в полые слитки-заготовки, нагрев полых слитков-заготовок до температуры пластичности, прокатку полых слитков-заготовок на пилигримовом стане в товарные или передельные трубы, термическую обработку, травление, правку, при необходимости ремонт, ультразвуковой контроль и приемку труб с допуском по диаметру и толщине стенки. Обеспечивается снижение энергозатрат и расходного коэффициента металла.

Изобретение относится к трубопрокатному производству, а именно к способу производства бесшовных горячекатаных труб размером 550×46-60 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из стали марки 10Х9МФБ-Ш. Трубы производят путем выплавки электрошлаковым переплавом полых слитков, расточки и обточки их в полые слитки-заготовки размером 660×вн.340×2300±50 мм, нагрева слитков-заготовок до температуры 1170-1190°C, прошивки - раскатки в стане поперечно-винтовой прокатки на оправках диаметром 475 и 450 мм в гильзы размером 680×вн.490×3170-3310-680×вн.465×2860-2980 мм, прокатки гильз на ТПУ 8-16″ с пилигримовыми станами в товарные трубы размером от 550×46×5900-6200 до 550×60×5000-5300 мм, отрезки пилой горячей резки технологических отходов - затравочных концов и пилигримовых головок, правки на шестивалковой правильной машине, термической обработки, ультразвукового контроля, приемки товарных труб. Обеспечивается снижение расходного коэффициента металла и повышение производительности пилигримовой установки. 1 табл.
Наверх