Спектрограф

Изобретение относится к области оптического приборостроения. Спектрограф содержит оптически связанные входную щель, вогнутую сферическую дифракционную решетку с криволинейными неравноотстоящими штрихами и регистрирующее устройство с плоской приемной поверхностью, перед которой расположен оптический элемент, выполненный в виде моноблока из оптически прозрачного материала, таким образом, что дифракционная решетка, регистрирующее устройство и входная щель расположены на поверхности моноблока. Входная щель расположена на плоскости, а дифракционная решетка и регистрирующее устройство - соответственно на сферических поверхностях с радиусами кривизны r и R, где r - радиус кривизны решетки, a R=(0,8÷1,2r). Технический результат - упрощение конструкции спектрографа при повышении качества спектрального изображения и расширении рабочего диапазона длин волн. 1 ил., 1 табл.

 

Изобретение относится к области оптического приборостроения и может быть использовано при создании спектральных приборов для различных видов спектрального анализа оптического излучения и мульти-демультиплексоров для спектрального уплотнения волоконно-оптических систем передачи.

Известен спектрограф, описанный в патенте РФ №1522046, МПК G01j 3/18, опубл. в бюлл. №20, 1994 г., содержащий входную щель, вогнутую сферическую дифракционную решетку с криволинейными неравноотстоящими штрихами и регистрирующее устройство с плоской приемной поверхностью, в котором расстояние от вершины решетки до центра плоской приемной поверхности, радиус кривизны штрихов в вершине решетки и изменение шага штрихов по поверхности решетки определяются рассчитанными соотношениями.

Наиболее близким по технической сущности является спектрограф, описанный в патенте РФ №1358538, МПК G01j 3/18, опубл. в бюлл. №16, 1997 г., содержащий входную щель, вогнутую сферическую дифракционную решетку с криволинейными неравноотстоящими штрихами и регистрирующее устройство с плоской приемной поверхностью, в котором расстояние от вершины решетки до центра плоской приемной поверхности, радиус кривизны штрихов в вершине решетки и изменение шага штрихов по поверхности решетки определяются рассчитанными соотношениями, а для компенсации остаточной дефокусировки вблизи приемной поверхности располагается оптический элемент в виде плоско-вогнутой отрицательной линзы, обращенной плоской поверхностью к регистрирующему устройству.

Задачей изобретения является создание спектрографа с повышенными характеристиками.

Технический результат - упрощение конструкции спектрографа при повышении качества спектрального изображения и расширении рабочего диапазона длин волн, повышении светосилы, надежности и технологичности.

Это достигается тем, что в спектрографе, содержащем оптически связанную входную щель, вогнутую сферическую дифракционную решетку с криволинейными неравноотстоящими штрихами и регистрирующее устройство с плоской приемной поверхностью, перед которой установлен оптический элемент, в отличие от известного, оптический элемент выполнен виде моноблока из оптически прозрачного материала таким образом, что дифракционная решетка, регистрирующее устройство и входная щель расположены на поверхности моноблока, причем входная щель расположена на плоскости, а дифракционная решетка и регистрирующее устройство - соответственно на сферических поверхностях моноблока с радиусами кривизны r и R, где r - радиус кривизны вогнутой сферической решетки, а R=(0,8÷1,2)r.

Изобретение поясняется чертежом.

Спектрограф содержит последовательно расположенные по ходу луча входную щель 1, вогнутую сферическую дифракционную решетку 2 с криволинейными неравноотстоящими штрихами и регистрирующее устройство с плоской приемной поверхностью 3. Оптический элемент прибора выполнен виде моноблока 4 из оптически прозрачного материала таким образом, что все элементы оптической схемы располагаются на его поверхности: входная щель 1 крепится на плоской поверхности моноблока, дифракционная решетка 2 - на противоположной его стороне на выпуклой сферической поверхности с радиусом кривизны, равным r, а вблизи приемной поверхности 3 регистрирующего устройства моноблок 4 имеет вогнутую или выпуклую поверхность 5 с радиусом кривизны R=(0,8÷1,2)r, причем радиус кривизны г выпуклой сферической поверхности моноблока 4 равен радиусу вогнутой сферической поверхности дифракционной решетки.

Спектрограф работает следующим образом. Излучение от входной щели 1, проходя через моноблок 4, падает на сферическую дифракционную решетку 2, которая имеет на своей поверхности неравноотстоящие криволинейные штрихи. Дифрагированное излучение проходит по моноблоку 4 в обратном направлении и фокусируется на плоской поверхности 3 регистрирующего устройства. Фокусировка на кривой ближайшей к плоской приемной поверхности 3 регистрирующего устройства обеспечивается с одной стороны расположением элементов оптической схемы и параметрами переменного шага решетки, которые рассчитываются по методике, аналогичной предлагаемой в патенте РФ №1522046, МПК G01j 3/18, опубл. в бюл. №20, 1994 г., а с другой - наличием сферической выпуклой или вогнутой поверхности 5, ограничивающей моноблок со стороны регистрирующего устройства.

Возможны два варианта реализации спектрографа:

1) спектрометр с использованием в качестве регистрирующего устройства многоэлементной линейки с плоской светочувствительной поверхностью;

2) мульти-демультиплексор с использованием блока приемных волокон, торцы которых расположены в одной плоскости.

Один из вариантов предлагаемого спектрографа с многоэлементным регистрирующим устройством и вогнутой поверхностью моноблока перед ним имеет следующие характеристики:

Спектральная область, нм315-1100
Радиус кривизны вогнутой сферической решетки, мм140
Размер заштрихованной поверхности решетки, мм240×40
Угол падения ϕ, град10
Угол дифракции средней длины волны диапазона ϕ′0, град1,6
Расстояние от решетки до входной щели d, мм138,5
Расстояние от решетки до сферической поверхности
моноблока перед регистрирующим устройством d′, мм130,7
Радиус кривизны сферической поверхности моноблока
со стороны регистрирующего устройства R, мм130,0
Расстояние от дифракционной решетки до приемной
поверхности регистрирующего устройства d′0, мм137,2

В таблице приведены величины обратной линейной дисперсии , полуширины аппаратной функции спектрографа ba и спектрального разрешения Δλ. Величина спектрального разрешения находится как произведение полуширины аппаратной функции на обратную линейную дисперсию. В расчетах использовалась ширина входной щели, равная 20 мкм.

λ, нм, ba, ммΔλ, нм
31535,80,0220,8
47235,90,0281
707,536,00,0220,8
94336,00,0301,1
110035,90,0301,1

Таким образом, в результате предложенного решения имеем два принципиальных отличия предлагаемого устройства: монолитная конструкция, когда все оптические элементы схемы крепятся на моноблок из оптически прозрачного материала, и наличие в моноблоке сферической поверхности, изменяющей фокусировку излучения различных длин волн.

Преимуществом того факта, что излучение распространяется в оптическом материале с показателем преломления больше единицы, является то, что падающий на моноблок сходящийся пучок после входной щели имеет меньшую апертуру, что позволяет повысить светосилу и разрешающую способность прибора.

Предлагаемая монолитная конструкция отличается температурной и вибрационной нерасстраиваемостью, позволяющей использовать прибор в технологических линиях, полевых условиях и т.д. Повышенная пыле-влагозащищенность дает возможность работы в условиях повышенной агрессивности окружающей среды.

Другим преимуществом монолитной схемы является существенное упрощение конструкции ввиду практического отсутствия механических деталей узлов входной щели, решетки и фотоприемного устройства. В результате значительно упрощается сборка и юстировка оптической схемы, кроме этого отпадает необходимость в массивном основании, фиксирующем положение элементов схемы, ввиду этого требования к корпусу значительно ослабляются. Все вышеперечисленное ведет к существенному удешевлению прибора в серийном производстве.

Наличие сферической поверхности раздела двух сред в области регистрирующего устройства позволяет уменьшить аберрации и в первую очередь аберрацию, вызванную дефокусировкой спектрального изображения, которая во многих случаях бывает доминирующей, что, в свою очередь, приводит к повышению разрешающей способности и увеличению рабочего диапазона спектральных приборов, а также уменьшению уровня перекрестных помех и увеличению количества каналов мульти-демультиплексоров.

Спектрограф, содержащий оптически связанные входную щель, вогнутую сферическую дифракционную решетку с криволинейными неравноотстоящими штрихами и регистрирующее устройство с плоской приемной поверхностью, перед которой установлен оптический элемент, отличающийся тем, что оптический элемент выполнен в виде моноблока из оптически прозрачного материала таким образом, что дифракционная решетка, регистрирующее устройство и входная щель расположены на поверхности моноблока, причем входная щель расположена на плоскости, а дифракционная решетка и регистрирующее устройство - соответственно на сферических поверхностях моноблока с радиусами кривизны r и R, где r - радиус кривизны вогнутой сферической решетки, a R=(0,8÷1,2)r.



 

Похожие патенты:

Изобретение относится к области оптического приборостроения. .

Изобретение относится к спектральному приборостроению и предназначено для получения спектров излучения с модуляцией экспозиций по определенному закону. .

Изобретение относится к спектрофотометрии и может быть использовано в физике, химии, биологии и медицине, а также в экологии и промышленности. .

Изобретение относится к области спектрального приборостроения. .

Изобретение относится к спектральным приборам и может найти широкое применение в фотометрии и голографии. .

Изобретение относится к измерительному датчику для портативного анализатора, использующего оптическое излучение, в котором оптическое излучение разлагают на спектр за счет применения решеточных спектрографов.

Изобретение относится к технической физике, а именно к оптическим спектральным приборам и может быть использовано для спектрального анализа различных материалов. .

Изобретение относится к устройствам для определения спектрального состава излученного или рассеянного света преимущественно пространственно неоднородных объектов.

Изобретение относится к области технической физики

Изобретение относится к спектральному анализу химического состава веществ, а именно к средствам формирования оптического спектра, и может быть использовано в устройствах атомно-эмиссионного, атомно-абсорбционного анализа, а также в других спектрофотометрических устройствах

Изобретение относится к автоматике и может быть использовано для автоматизированной регистрации спектров поглощения и люминесценции

Изобретение относится к оптической спектрометрии (спектроскопии) и может быть использовано для создания линейных по оптической частоте спектрометров

Изобретение относится к устройствам для исследования источников света оптическими методами и может быть использовано для определения качества спектра электрических ламп

Изобретение относится к спектральным приборам, а именно дифракционным полихроматорам, и предназначено для анализа спектров излучения исследуемых объектов

Изобретение относится к технике спектрального анализа и может найти применение при эмиссионных и атомно-абсорбционных измерениях в спектроанализаторах с дифракционными решетками и многоэлементными фотоприемниками

Изобретение относится к области оптического приборостроения и предназначено для регистрации спектров комбинационного рассеяния (КР) света газовых сред

Способ включает регистрацию оптического спектра суммы интерферирующих волн при различных значениях взаимной задержки, выделение модулирующих функций, соответствующих взаимным задержкам, определение нелинейности распределения их фазы, вычисление корректирующей таблицы, регистрацию оптического спектра суммы интерферирующих волн с неизвестными взаимными задержками, применение корректирующей таблицы к оптическому спектру. Рассчитывают сегментированную корректирующую таблицу с уменьшенным числом определяемых отсчетов регистрируемых оптических частот, разбивают зарегистрированный массив на соответствующие сегменты, вычисляют пространственные распределения для каждого сегмента с применением преобразования Фурье, домножают каждое распределение на значения сегментированной корректирующей таблицы, вычисляют восстановленные значения амплитуды оптического спектра с применением обратного преобразования Фурье и комбинируют путем сложения восстановленные значения для получения спектральных отсчетов, эквидистантных по оптической частоте. Технический результат - исключение искажений формы аппаратной функции при использовании Фурье-обработки регистрируемых значений оптических спектров. 2 н.п. ф-лы, 2 ил.

Изобретение относится к оптическому приборостроению и касается зеркального спектрометра. Спектрометр состоит из входной щели, первого зеркала, дифракционной решетки, второго зеркала, фотоприемного устройства. Входная щель смещена относительно оптической оси. Первое и второе зеркала выполнены в виде внеосевых фрагментов вогнутых сферических зеркал, обращенных вогнутостью к входной щели. Дифракционная решетка является выпуклой сферической и расположена осесимметрично на оптической оси. Штрихи дифракционной решетки параллельны длинной стороне входной щели. Фотоприемное устройство смещено с оптической оси и расположено со стороны, противоположной входной щели. Входная щель и фотоприемное устройство наклонены в меридиональном сечении на небольшие углы. Центры кривизны сферических поверхностей лежат на одной общей оси, являющейся оптической осью спектрометра. Технический результат заключается в увеличении относительного отверстия, улучшении качества изображения, уменьшении размеров и массы и упрощении юстировки спектрометра. 4 з.п. ф-лы, 5 ил., 1 табл.
Наверх