Способ калибровки в циклическом режиме нагружения машин для испытания на усталость

Изобретение относится к области метрологического контроля. Сущность: осуществляют внешний осмотр, опробование, определение метрологических параметров, обработку результатов. Калибровку проводят динамометром, используемым в качестве нуль-индикатора, при этом сравнивают показания силоизмерителя машины при циклических нагрузках с показаниями при таких же статических нагрузках на той же машине. Калибровку проводят при знакопеременном нагружении с любым коэффициентом асимметрии цикла, что позволяет конфигурировать машину максимально приближенно к реальным испытаниям, по результатам полученных данных при калибровке вычисляют предел допускаемой погрешности машины при измерении нагрузки по формуле. Технический результат: повышение точности испытания. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к области метрологического контроля. Преимущественная область применения: метрологический контроль канала силы машин для испытаний на усталость в циклическом режиме.

На данный момент существует способ поверки машин такого типа, регламентируемый ГОСТ 8.425-81. Он предполагает использование образцового динамометра переменных сил типа ДОЖ, который устанавливается на машину, предварительно нагружают его статической нагрузкой и запускают циклическую работу машины. В результате поверки определяют следующие основные метрологические характеристики:

случайную составляющую погрешность измерения динамической нагрузки по следующей формуле:

где Pmax,i и Pmin,i - соответственно максимальное и минимальное показания силоизмерителя машины при i-й серии испытаний,

РД - действительное значение динамической нагрузки;

систематическую составляющую погрешности измерения динамической нагрузки Δc по формуле:

где - среднее арифметическое пяти показаний силоизмерителя машины;

погрешность поддержания амплитуды динамической нагрузки σп по формуле:

где Рi - i-е показание силоизмерителя машины.

Основным недостатком этого способа является его частность, т.к. он разрабатывался под конкретное образцовое средство поверки - образцовый динамометр переменных сил типа ДОЖ. Данная методика применима только для знакопостоянных нагрузок и при предварительном нагружении динамометра статической нагрузкой, т.е. отсутствует возможность проведения поверки с переходом через нуль нагрузки. При данном способе также имеют место значительные погрешности установки. Кроме того, формула 1 является отношением размаха показаний к действительному значению динамической нагрузки в процентах и больше напоминает формулу расчета относительной погрешности воспроизводимости нагрузки , тем более если учитывать, что при N→∞, где N - число измерений. Общеизвестно, что случайная составляющая погрешности измерения вычисляется как отклонения результатов измерения от истинного значения измеряемой величины. Практически рассматривают отклонения результатов измерения от среднего арифметического из ряда измерений Рi, т.е.

.

Основной недостаток формулы 2 заключается в том, что сама по себе эта формула не позволяет нам удостовериться в стабильности силоизмерителя и удовлетворительной управляемости машины. К примеру, даже при поддержании постоянной амплитуды динамических колебаний показания силоизмерителя могут розниться в большом диапазоне, в то время как их среднее значение будет близко к действительному.

В формуле 3 среднее квадратическое отклонение относится к Рi, в то время как более логично отнесение к контролируемому параметру, т.е. к заданному значению нагрузки в этой точке. Кроме того, среднее квадратическое отклонение дает нам оценку рассеяния единичных результатов измерений в ряду измерений около среднего их значения, что так же как и в случае с формулой 2 сглаживает резкие выпады величины из ряда измерений.

Таким образом, была поставлена задача разработки универсального способа калибровки машин для испытаний на усталость в циклическом режиме нагружения, лишенного всех выше описанных недостатков.

Поставленная задача решается предлагаемым способом калибровки, который не привязан к конкретному средству измерения, позволяет проводить поверку при знакопеременном нагружении и при обработке результатов рассчитываются предел допускаемой погрешности машины при измерении нагрузки и предел допускаемой погрешности машины при поддержании нагрузки в каждом цикле нагружения.

Сущность изобретения состоит в том, что калибровка проводится динамометром используемом в качестве нуль-индикатора, т.е. после установки динамометра в испытательную машину он калибруется в статическом режиме по показаниям датчика силы машины, после чего без переустановки динамометра запускается циклический режим работы, и датчик силы машины калибруется по показаниям динамометра. Перед проведением такого рода калибровки машина должна быть поверена в статическом режиме работы. При таком способе значительно улучшаются условия калибровки: все измерения производят в течение короткого промежутка времени и при постоянной установке динамометра. Погрешности установки и временные в значительной мере устраняются. Калибровка может быть проведена при знакопеременном нагружении с любым коэффициентом ассиметрии цикла, что позволяет конфигурировать машину максимально приближенно к реальным испытаниям.

В результате калибровки вычисляется предел допускаемой погрешности машины при измерении нагрузки с помощью формулы:

где Pi - i-e значение впадины или пика суммарной нагрузки, измеренной датчиком силы машины;

Рdi - i-e действительное значение впадины или пика суммарной нагрузки.

Предел допускаемой погрешности машины при поддержании нагрузки рекомендуется вычислять по следующей формуле:

где Pmax и Pmin - наибольшее и наименьшее значения пика или впадины суммарной нагрузки в серии измерений;

PR - заданное (контролируемое) значение пика или впадины.

Определение предела допускаемой погрешности машины при измерении нагрузки по формуле 4, в отличие от способа по ГОСТ 8.425-81, позволяет оценить значения погрешности в каждой измеренной точке, а формула 5 - удостовериться в стабильности силоизмерителя и управляемости машины от измерения к измерению.

Заявляемый способ калибровки машин для испытаний на усталость в циклическом режиме нагружения осуществляется следующим образом. Динамометр устанавливается на машину и закрепляется в захватах таким образом, чтобы исключить проскальзывание. После чего производится тренировочное нагружение динамометра три раза до максимального значения суммарной нагрузки плюс 5%. Затем машина разгружается и обнуляются показания датчика силы машины и динамометра. Динамометр градуируется по показаниям датчика силы машины в статическом режиме.

После этого, не переставляя динамометр, машину переводят в режим циклического нагружения на нужной частоте. После достижения стабильности системы производят измерение не менее 20 пиков и впадин суммарной нагрузки на датчике силы и динамометре. Показания датчика силы и динамометра заносятся в протокол. Затем вычисляют предел допускаемой погрешности машины при измерении нагрузки и предел допускаемой погрешности машины при поддержании нагрузки с помощью формул 4 и 5 соответственно.

Пример выполнения калибровки приведен в Приложении А.

Приложение А
ПРОТОКОЛ № калибровки в циклическом режиме нагружения
дата11.07.2006
время10:30
температура в помещении20
тип калибруемого изделияУРС-20
диапазон измеренияот 200 кН до -200 кН
калибруемый диапазонот 200 кН до -200 кН
частота100 Гц
закон нагруженияsin
калибровка проводится на соответствиеГОСТ 28841-90
№ циклаПогрешность пика суммарной нагрузкиПогрешность впадины суммарной нагрузкиПрошел/не прошел
Pi, кНPdi, кНАбсолют. значение погрешн., кНОтносит. значение погрешн. %Pi, кНPdi, кНАбсолют. значение погрешн., кНОтносит. значение погрешн. %
1200196,5463,4541,757-200-198,8551,1450,576Прошел
2200197,0152,9851,515-200-198,5211,4790,745Прошел
3200197,2022,7981,419-200-198,7581,2420,625Прошел
4200196,8963,1041,576-200-199,0250,9750,490Прошел
5200196,7513,2491,651-200-198,2691,7310,873Прошел
6200196,9583,0421,544-200-199,1020,8980,451Прошел
7200197,2122,7881,414-200-199,020,980,492Прошел
8200196,6893,3111,683-200-198,7511,2490,628Прошел
9200197,0252,9751,510-200-198,6281,3720,691Прошел
10200197,1032,8971,470-200-198,9581,0420,524Прошел
11200196,9633,0371,542-200-198,6741,3260,667Прошел
12200197,0332,9671,506-200-198,8991,1010,554Прошел
13200196,7893,2111,632-200-198,3121,6880,851Прошел
14200196,8213,1791,615-200-199,0580,9420,473Прошел
15200197,022,981,513-200-198,6511,3490,679Прошел
16200197,1852,8151,428-200-198,5681,4320,721Прошел
17200197,0552,9451,495-200-198,7331,2670,638Прошел
18200196,9033,0971,573-200-198,6531,3470,678Прошел
19200196,963,041,543-200-198,8121,1880,598Прошел
20200196,8233,1771,614-200-198,9651,0350,520Прошел
Предел допускаемой погрешности машины при поддержании пика нагрузки σП=0,328 прошел

Предел допускаемой погрешности машины при поддержании впадины нагрузки σП=0,416 прошел

1. Способ калибровки в циклическом режиме нагружения машин для испытания на усталость, включающий внешний осмотр, опробование, определение метрологических параметров, обработку результатов, отличающийся тем, что калибровку проводят динамометром, используемым в качестве нуль-индикатора, при этом сравнивают показания силоизмерителя машины при циклических нагрузках с показаниями при таких же статических нагрузках на той же машине, причем калибровку проводят при знакопеременном нагружении с любым коэффициентом асимметрии цикла, что позволяет конфигурировать машину максимально приближенно к реальным испытаниям, по результатам полученных данных при калибровке вычисляют предел допускаемой погрешности машины при измерении нагрузки по формуле

где Pi - i-e значение впадины или пика суммарной нагрузки, измеренной датчиком силы машины;

Pdi - i-e действительное значение впадины или пика суммарной нагрузки,

и предел допускаемой погрешности машины при поддержании нагрузки, по формуле

где Рmax и Pmin - наибольшее и наименьшее значение пика или впадины суммарной нагрузки в серии измерений;

PR - заданное (контролируемое) значение пика или впадины.

2. Способ калибровки по п.1, отличающийся тем, что после градуировки динамометра калибровку машины проводят, не переставляя динамометр, т.е. при его постоянной установке, что в значительной мере устраняет погрешности установки.

3. Способ калибровки по п.1 или 2, отличающийся тем, что вычисление пределов допускаемых погрешностей проводится для каждого цикла отдельно.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к оценке крутящего момента, и может быть использовано при изготовлении или при определении технического состояния и пределов действия моментных ключей.

Изобретение относится к силоизмерительной технике и может быть использовано при производстве и испытаниях весоизмерительных и силоизмерительных приборов. .

Изобретение относится к силоизмерительной технике, а именно к образцовым средствам задания и измерения силы. .

Изобретение относится к силоизмерительной технике, и может быть использовано при создании прецензионных силонагружающих и весосило-измерительных устройств, например, образцовых силозадающих машин, рабочих средств измерений и крановых весов.

Изобретение относится к области измерительной техники и касается создания средств калибровки динамометров. .

Изобретение относится к измерительной технике, в частности к устройствам для измерения сил. .

Изобретение относится к измерительной технике и может быть использовано для калибровки датчиков усилий, контролирующих натяжение армоканатов защитных оболочек реакторов типа ВВЭР.

Изобретение относится к измерительной технике, а именно к динамической градуировке моментомеров путем определения их динамических характеристик. .

Изобретение относится к поверочным устройствам, применяемым для градуировки силоизмерительных систем испытательных авиационных стендов в процессе метрологической аттестации.

Изобретение относится к измерительной технике, точнее к образцовым средствам задания и измерения силы в соответствии с государственной поверочной схемой для средств измерения силы по ГОСТ 8.065-85.

Изобретение относится к области механики и к методам измерения

Изобретение относится к технике электрической связи и может быть использовано в системах контроля, управления и защиты грузоподъемных машин

Изобретение относится к метрологической технике, к технике обеспечения единства измерения силы, а именно к машинам - эталонам силы

Изобретение относится к области весоизмерительной техники и направлено на упрощение конструкции и повышение точности и эффективности измерения силы, что обеспечивается за счет того, что при осуществлении контроля состояния устройства измерения силы с подвижным элементом передачи силы, через который сила, воздействующая на устройство измерения силы, передается на измерительный преобразователь, формирующий сигнал измерения, соответствующий приложенной силе, после чего сигнал преобразуют в форму, пригодную для индикации на дисплее, или передается для дальнейшей обработки. При этом, согласно изобретению, определяют, по меньшей мере, один параметр (М), который характеризует свободную подвижность элемента передачи силы или изменение упомянутой свободной подвижности во времени, причем параметр сравнивают, по меньшей мере, с одним пороговым значением и причем в зависимости от результата сравнения обнаруживают либо нормальное состояние, либо ограничение свободной подвижности элемента (передачи силы, и причем в случае, когда было обнаружено ограничение свободной подвижности, устройство измерения силы приводится в действие. 2 н. и 14 з.п. ф-лы, 6 ил.

Изобретение относится к области измерительной техники и может быть использовано для поверки датчиков силы. Техническим результатом является повышение точности поверки канала нагружения датчик силы - гидроцилиндр. Способ поверки датчика силы заключается в том, что поверяемый датчик устанавливают на испытательную машину между образцовым силоизмерителем, жестко закрепленным на неподвижной траверсе машины, и подвижным штоком нагрузочного устройства так, чтобы прилагаемые усилия были направлены по его оси. Поверку датчика производят посредством сравнения показаний поверяемого датчика с показаниями образцового силоизмерителя машины при одновременном воздействии на них различных по величине и направлению усилий (растяжение-сжатие). Датчик поверяют совместно с гидроцилиндром, штоковую полость которого заполняют рабочей жидкостью до упора поршня в днище гидроцилиндра и герметично закрывают. 1 ил.

Изобретения относятся к области измерительной техники и могут быть использованы для поверки датчиков силы, используемых для испытаний авиационных конструкций. Способ позволяет проводить поверку датчика силы непосредственно на месте его использования. Устройство для осуществления способа содержит поверяемый датчик силы и образцовый силоизмеритель. При этом датчик силы, гидроцилиндр и образцовый силоизмеритель установлены в силовой цепочке, связывающей объект испытаний с жесткой опорой, шток гидроцилиндра с закрепленным на нем датчиком силы шарнирно соединен с объектом испытаний, а корпус гидроцилиндра с закрепленным на нем образцовым силоизмерителем шарнирно соединен с жесткой опорой. Технический результат заключается в упрощении процесса поверки непосредственно на стенде и сокращении времени испытаний. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ручным инструментам для затяжки резьбовых соединений. Устройство затяжки резьбовых соединений с обеспечением точного крутящего момента при затяжке содержит комбинацию усилителя (100) крутящего момента с согласованным с ним и откалиброванным вместе с ним динамометрическим ключом (200). Динамометрический ключ (200) снабжен запоминающим устройством (250) для записи данных, характеризующих момент затяжки, и в запоминающем устройстве (250) хранится передаточное отношение (МА(МЕ)) усилителя (100) крутящего момента, определенное при калибровке. Способ калибровки устройства для затяжки включает определение передаточного отношения (МА(МЕ)) на основе по меньшей мере одного среднего значения, полученного по всему диапазону крутящего момента. Технический результат заключается в повышении точности при определении выходного крутящего момента. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к испытательной технике, в частности к стендам для прочностных испытаний летательных аппаратов, например крыльев самолетов. Устройство представляет собой конструкцию для крепления консоли/консолей крыла, расположенную на траверсе, на которой также расположена эластичная пневмокамера/пневмокамеры. Между траверсой и пневмокамерой/пневмокамерами может быть две или более шарнирно соединенных панели, оси шарниров которых параллельны хордам крыла, при этом ближняя из панелей закреплена на стенде жестко, а остальные соединены с траверсой домкратами, причем точкой крепления домкрата на траверсе является геометрический центр расположенной над ней поверхности крыла. Технический результат заключается в упрощении конструкции и повышении достоверности испытаний. 5 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, а именно к динамической калибровке винтовых динамометров, используемых для измерения крутящих моментов на гребных валах в опытных гидродинамических лабораториях. Способ динамической калибровки винтовых динамометров включает измерение крутящего момента на валу винтового динамометра и приложение импульсного динамического воздействия к валу путем разрыва гибкой связи между шкивами. При этом одновременно с измерением винтовым динамометром крутящего момента измеряют дополнительным динамометром усилие разрыва упомянутой гибкой связи и по результатам измерения корректируют чувствительность преобразователя момента динамометра в электрический сигнал в зависимости от величины опорного момента инерции винтового динамометра. Техническим результатом изобретения является улучшение корректировки чувствительности винтового динамометра. 2 ил.

Изобретение относится к приборостроению, в частности к способам испытания подшипниковых опор ротора, и может быть преимущественно использовано при определении предварительного осевого натяга подшипников качения ротора. Способ включает возбуждение собственных колебаний вала ротора и измерение параметров колебаний. Для каждого типа роторов, имеющих в опорах подшипники качения, выводятся экспериментальным путем зависимости относительной частоты пика от установки предварительного натяга. Для измерения и контроля силы предварительного натяга в конструкцию ротора предварительно вносят изменения: вдоль оси вала ротора между регулировочным винтом установки предварительного натяга и пружиной при минимуме вмешательства в конструкцию узла устанавливается датчик силы, а на корпус ротора в области передней опоры на одной оси с направлением приложенной силы удара крепится датчик виброускорения. Воздействуя силовым импульсом малой длительности (т.е. упругим ударом), получают отклик виброускорения, что позволяет вычислить относительную частоту пика и сопоставить ее с показаниями датчика силы. Проделав эксперимент для всего рабочего диапазона установки предварительного осевого натяга, получают зависимость относительной частоты пика от величины установки предварительного натяга. Технический результат заключается в повышении точности определения осевого натяга. 2 ил., 1 табл.
Наверх