Устройство для измерения коэффициента отражения радиоволн от радиопоглощающих покрытий

Использование: в радиотехнике. Технический результат заключается в повышении точности измерения. Устройство содержит размещенные на каркасе последовательно соединенные устройство ввода и обработки, устройство управления и обмена, устройство развертки и сверхширокополосный (СШП) приемник с приемной антенной, при этом ко второму выходу устройства развертки присоединен генератор СШП сигналов с передающей антенной, выход СШП приемника присоединен к устройству управления и обмена; исследуемый образец РПП и эталонную металлическую пластину, между приемной и передающей антеннами введена разделительная пластина из радиопоглощающего материала, а на расстоянии R от передающей антенны - опорное устройство, на исследуемый образец РПП и на эталонную металлическую пластину по периметру нанесена окантовка из РПМ сечением А×А, причем

; ,

где Д - максимальный линейный размер исследуемого образца РПП; λmin, λmax - минимальная и максимальная длина волны исследуемого диапазона. 4 ил.

 

Изобретение относится к радиотехнике, в частности к радиолокации, и может быть использовано для измерения радиофизических характеристик (РФХ) радиопоглощающих покрытий (РПП). Радиофизические характеристики РПП исследуются в интересах создания техники со сниженной радиолокационной заметностью, обеспечения электромагнитной совместимости радиоэлектронных средств, биологической защиты персонала, обслуживающего радиоэлектронные средства.

Перечисленные применения РПП требуют знания одной из важнейших РФХ - коэффициента отражения (КО) радиоволн в сверхширокой полосе частот (2...40 ГГц) и различных углах облучения. В отечественной науке к сверхширокополосным относят сигналы, у которых ширина спектра Δf соизмерима с центральной частотой f0: показатель широкополосности μ=Δf/f0≈1, в то время как у узкополосных сигналов Δf/f0<<1 (см. Варганов М.Е., Зиновьев Ю.С., Астанин Л.Ю. и др. Радиолокационные характеристики летательных аппаратов. - М.: Радио и связь, 1985, с.236).

Известно устройство для измерения коэффициента отражения радиоволн от РПП в свободном пространстве (см. Алимин Б.Ф. Техника измерений коэффициентов отражения поглотителей электромагнитных волн. Зарубежная радиоэлектроника, №2, 1977 г., с.91).

Устройство содержит генератор СВЧ, фильтр нижних частот, аттенюатор, приемную и передающую антенны, приемник, компенсирующую цепочку, состоящую из фазовращателя и переменного аттенюатора, а также исследуемый образец РПП и эталонную металлическую пластину. При этом генератор, фильтр нижних частот, аттенюатор и передающая антенна соединены последовательно. Приемная антенна соединена с приемником. Между приемной и передающей антенной присоединена компенсирующая цепочка.

Исследуемый образец РПП помещается на опорное устройство в поле передающей антенны. Отраженный сигнал принимается приемной антенной и поступает в приемник, где усиливается и обрабатывается.

Затем на месте исследуемого образца устанавливается эталонная металлическая пластина, отражения от которой фиксируются приемником.

По отношению мощностей сигналов, отраженных от образца РПП и эталонной металлической пластины, вычисляют КО РПП на фиксированной частоте.

Недостатком устройства является низкая точность измерений, обусловленная отражениями от стен помещения и элементов опорного устройства. Другим недостатком является узкополосность устройства. Для исследования в широкой полосе частот требуется создание множества однотипных установок на различные диапазоны частот, что приводит к значительному увеличению времени измерений и снижению точности измерений при стыковке зарегистрированных данных, получаемых на разных установках.

Наиболее близким по технической сущности и достигаемому эффекту является устройство, реализующее способ измерения коэффициента отражения радиоволн от РПП, защищенное патентом РФ №2234101, МПК G01S 13/00; G01R 29/00, 2004 г.

Устройство, реализующее способ измерения коэффициента отражения радиоволн от РПП, содержит генератор СШП сигналов, передающую антенну, приемную антенну, СШП приемник, устройство управления и обмена, устройство ввода и обработки, устройство развертки, размещенные на каркасе, а также содержит исследуемый образец РПП и эталонную металлическую пластину.

Выход генератора СШП сигналов соединен со входом передающей антенны, которая связана с исследуемым образом РПП посредством излучаемого сигнала. Отраженный сигнал связывает исследуемый образец РПП с приемной антенной посредством отраженного сигнала. Выход приемной антенны связан со входом СШП приемника, выход которого соединен с первым входом устройства управления и обмена, выход которого соединен со входом устройства развертки, первый выход которого соединен со входом генератора СШП сигналов, второй выход устройства развертки соединен со вторым входом СШП приемника, а третий выход устройства развертки соединен со вторым входом устройства управления и обмена, которое связано с устройством ввода и обработки каналом обмена.

Устройство, реализующее способ измерения коэффициента отражения радиоволн от РПП, работает следующим образом. Оператор устанавливает в устройстве ввода и обработки параметры измерений отраженного сигнала, которые через канал обмена передаются в устройство управления и обмена. По команде с устройства управления и обмена в устройстве развертки формируются управляющие импульсы, которые подаются на генератор СШП сигналов, СШП приемник и устройство управления и обмена. Генератор СШП формирует СШП сигналы, которые ударно возбуждают передающую антенну, которая излучает сигнал, облучающий образец РПП. Отраженный от образца РПП сигнал Vc(tk), где tk - временные отсчеты сигнала (фиг.2), поступает в приемную антенну и затем в СШП приемник. Далее сигнал поступает в устройство управления и обмена, где преобразуется в цифровую форму, в соответствии с параметрами измерений.

Затем сигнал передается в устройство ввода и обработки, в котором с помощью дискретного преобразования Фурье производится вычисление его спектральной плотности Gc(fn) (фиг.3), разбиения диапазона рабочих частот на совокупности частотных интервалов, аппроксимации линейными функциями фазовой характеристики спектральной плотности Gc(fn) в каждом р-ом интервале, нахождения соответствующих запаздываний частотных составляющих сигналов, проведения когерентного суммирования с учетом фазовых сдвигов отсчетов Gc(fn) и определения средних на интервалах значений спектральной плотности Gc(fp) зарегистрированного сигнала.

Аналогичные действия осуществляются после замены образца РПП на эталонную металлическую пластину. Вычисляются средние на интервалах значения спектральной плотности сигнала Gm(fp), отраженного от эталонной металлической пластины.

Вычисление функций Gc(fn) и Gm(fn) производится по формулам

где N - количество отсчетов в зарегистрированных импульсных характеристиках; Δt - временной шаг между ближайшими отсчетами; j - мнимая единица; - частотные отсчеты, в которых вычисляются спектральные плотности сигналов, выбираемые в диапазоне рабочих частот измерительной установки Δf, далее диапазон Δf разбивают на совокупность Nf частотных интервалов δfp, причем в каждом интервале δfp фазовые характеристики спектральных плотностей Gс(fn) и Gm(fn) (фиг.4, кривая 1) аппроксимируют линейными функциями (фиг.4, кривая 2), по наклонам которых определяют соответствующие запаздывания частотных составляющих сигналов tcp, tmp и проводят когерентное суммирование с учетом фазовых сдвигов спектральных плотностей зарегистрированных сигналов

где fp - средняя частота интервала δfp; N - количество частотных отсчетов в интервале δfp, и затем определяют значения КО РПП K(fp) в дискретных частотных отсчетах в сверхширокой полосе частот Δf по формуле

Недостатком известного устройства для измерения коэффициента отражения радиоволн от РПП является низкая точность измерения, обусловленная тремя основными факторами:

электродинамическим взаимодействием приемной и передающей антенн устройства и, как следствие, затекание электромагнитной энергии из приемной в передающую антенну;

неточностью позиционирования исследуемого образца РПП и эталонной металлической пластины по отношению к приемной и передающей антеннам;

наличием в сигнале, отраженном от исследуемого образца РПП и эталонной металлической пластины, дифракционной составляющей и излучения от краев.

Задачей настоящего изобретения является повышение точности измерения коэффициента отражения радиоволн от РПП.

Решение поставленной задачи достигается тем, что в устройство для измерения коэффициента отражения радиоволн от РПП, содержащее последовательно соединенные устройство ввода и обработки, устройство управления и обмена, устройство развертки, СШП приемник с приемной антенной, размещенные на общем основании (каркасе), при этом ко второму выходу устройства развертки присоединен генератор СШП сигналов с передающей антенной, а третий выход устройства развертки соединен со вторым входом устройства управления и обмена, второй выход которого соединен со входом устройства ввода и обработки, содержащее также исследуемый образец РПП и эталонную металлическую пластину, согласно изобретению дополнительно введены между приемной и передающей антеннами разделительная пластина из радиопоглощающего материала (РПМ), установленная на общем основании (каркасе), и на расстоянии R от передающей антенны опорное устройство, при этом на исследуемый образец РПП и эталонную металлическую пластину по периметру нанесена окантовка из РПМ сечением А×А, причем

где Д - максимальный линейный размер исследуемого образца РПП;

λmin, λmax - минимальная и максимальная длина волны исследуемого диапазона соответственно.

Установка разделительной пластины из РПМ повышает степень развязки между приемной и передающей антеннами, что приводит к повышению чувствительности приемника на 6...12 дБ (установлено экспериментально). А повышение чувствительности приемника на 6...12 дБ приводит к уменьшению погрешности измерения коэффициента отражения на 1,3...1,8 дБ (см. Блэксмит и др. Введение в методы измерения радиолокационного поперечного сечения цели ТИИЭР, 1968, т.8, с.1043). При этом для сохранения форм диаграмм направленности приемной и передающей антенн разделительная пластина из РПМ не должна выступать за плоскость раскрыва антенн на расстояние более 0,3 λmin.

Введение опорного устройства позволяет повысить точность позиционирования исследуемого образца РПП и эталонной металлической пластины. Установка исследуемого образца РПП и эталонной металлической пластины в одинаковом положении снижает погрешность калибровки на 0,3...0,5 дБ.

Нанесение окантовки из РПМ на исследуемый образец РПП и эталонную металлическую пластину позволяет снизить дифракционную составляющую отраженного сигнала и излучение от краев, что дает возможность снизить погрешность измерения коэффициента отражения на 0,4...0,7 дБ.

На фиг.1 представлена структурная схема заявляемого устройства для измерения коэффициента отражения радиоволн от РПП.

На фиг.2 приведены фрагменты регистрируемых временных сигналов, отраженных от образца РПП Vc(t) и эталонной металлической пластины Vm(t). На фиг.3 представлены амплитудные характеристики спектральной плотности зарегистрированного сигнала Gm(c)(fn) и усредненной в интервалах δfp спектральной плотности этого же сигнала Gm(c)(fp). На фиг.4 приведена фазовая характеристика спектральной плотности зарегистрированного сигнала Gm(c)(fn) на интервале δfp и ее линейная аппроксимация для определения соответствующего времени запаздывания tm(c)p.

Заявляемое устройство для измерения коэффициента отражения радиоволн от РПП содержит устройство ввода и обработки - 1, устройство управления и обмена - 2, устройство развертки - 3, сверхширокополосный приемник - 4, приемную антенну - 5, передающую антенну - 6, генератор сверхширокополосных сигналов - 7, исследуемый образец РПП - 8, опорное устройство - 9, эталонную металлическую пластину - 10, разделительную пластину из РПМ - 11, каркас - 12, окантовку из РПМ - 13.1 для эталонной металлической пластины, окантовку из РПМ - 13.2 для исследуемого образца РПП. На каркасе - 12 установлены устройство ввода и обработки - 1, устройство управления и обмена - 2, устройство развертки - 3, СШП приемник - 4, приемная антенна - 5 и соединены последовательно. Ко второму выходу устройства развертки - 3 присоединен генератор СШП сигналов с передающей антенной - 6, третий выход устройства развертки - 3 соединен со вторым входом устройства управления и обмена - 2, выход СШП приемника - 4 присоединен к третьему входу устройства управления и обмена - 2, второй выход которого соединен со входом устройства ввода и обработки - 1. Исследуемый образец РПП - 8 с окантовкой из РПМ - 13.2 расположен на опорном устройстве - 9, а между приемной и передающей антеннами установлена с креплением к каркасу - 12 разделительная пластина из РПМ - 11.

Для реализации технического решения может быть использовано стандартное промышленное оборудование. Так, например, четыре устройства: устройство ввода и обработки - 1, устройство управления и обмена - 2, устройство развертки - 3, сверхширокополосный приемник - 4 представляют собой серийно выпускающийся промышленностью СШП программируемый стробоскопический цифровой осциллограф типа TMR 8140 [ООО Научно-производственное предприятие «Трим», г.Санкт-Петербург].

В качестве приемной антенны - 5 и передающей антенны - 6 могут быть использованы антенны измерительные рупорные П6 -23А [Научно-производственная компания «Ритм», г.Краснодар].

Генератор сверхширокополосных сигналов - 7 может быть реализован при помощи генератора сверхкоротких импульсов типа TMG 60100V [ООО Научно-производственное предприятие «Трим», г.Санкт-Петербург].

Металлическая подложка, на которую наносится исследуемый образец РПП - 8, и эталонная металлическая пластина - 10 выполнены из алюминия размерами 500×500×3 мм. Выбор таких поперечных размеров обусловлен следующим. Так как КО определяют по результатам измерений отраженных сигналов от исследуемого образца РПП - 8 и эталонной металлической пластины - 10, находящихся в свободном пространстве, необходимо, чтобы зеркальная составляющая была преобладающей. Для этого поперечные размеры пластин должны быть много больше максимальной длины волны рабочего диапазона λmin. Кроме того, для уменьшения погрешностей, обусловленных краевыми эффектами, необходимо, чтобы напряженность поля облучения на краях пластин была существенно ниже, чем в их центре. Поэтому с учетом значения λmin=150 мм и размеров рабочего объема 300 мм по уровню поля на его границах - 3 дБ поперечные размеры должны составлять не менее 400×400 мм. С другой стороны в результате эксперимента было установлено, что значения измеренных импульсных характеристик эталонных металлических пластин с поперечными размерами больше 500×500 мм не изменялись.

В качестве опорного устройства - 9 может быть использована тренога от измерительной рупорной антенны типа П6 - 23А.

Разделительная пластина из РПМ - 11, окантовка из РПМ - 13.1 и 13.2 могут быть реализованы при помощи многослойного поглотителя СВЧ-энергии общей толщиной (0,7-0,75) λmax [Авторское свидетельство СССР №1788541, МКИ H01Q 17/00, 1993].

Каркас - 12 может быть выполнен из алюминия размерами L×100×5 мм.

Устройство для измерения коэффициента отражения радиоволн от РПП работает следующим образом. Оператор в устройстве ввода и обработки - 1 устанавливает параметры измерений отраженного сигнала, которые передаются в устройство управления и обмена - 2. По команде с устройства управления и обмена - 2 в устройстве развертки - 3 формируются управляющие импульсы, которые подаются на генератор СШП сигналов - 7, СШП приемник - 4 и устройство управления и обмена - 2. Генератор СШП сигналов - 7 формирует СШП сигналы, которые ударно возбуждают передающую антенну - 6, которая излучает сигнал, облучающий исследуемый образец РПП - 8 с окантовкой из РПМ - 13.2, установленный на опорном устройстве - 9. При этом исследуемый образец РПП - 8 с окантовкой из РПМ - 13.2 устанавливается точно по нормали к направлению облучения. Отраженный от образца РПП - 8 с окантовкой из РПМ - 13.2 сигнал поступает в приемную антенну - 5 и затем в СШП приемник - 4. Принятый во временной форме сигнал поступает в устройство управления и обмена - 2, преобразуется в цифровую форму в соответствии с параметрами измерений и передается в устройство ввода и обработки - 1 для вычисления с помощью дискретного преобразования Фурье его спектральной плотности Gc(fn) (фиг.3), разбиения диапазона рабочих частот на совокупности частотных интервалов, аппроксимации линейными функциями фазовой характеристики спектральной плотности Gc(fn) на этих интервалах, нахождения соответствующих запаздываний частотных составляющих сигналов, проведения когерентного суммирования с учетом фазовых сдвигов отсчетов Gc(fn) и определения средних на интервалах значений спектральной плотности Gc(fp) зарегистрированного сигнала. Далее исследуемый образец РПП - 8 с окантовкой из РПМ - 13.2 снимается с опорного устройства - 9 и на его место устанавливается эталонная металлическая пластина - 10 с окантовкой из РПМ - 13.1.

Аналогичные действия осуществляются после замены образца РПП - 8 с окантовкой из РПМ - 13.2 на эталонную металлическую пластину - 10 с окантовкой из РПМ - 13.1. Вычисляются средние на интервалах значения спектральной плотности сигнала Gm(fp), отраженного от эталонной металлической пластины - 10 с окантовкой из РПМ - 13.1.

Затем с помощью выражения (3) определяется КО РПП в сверхширокой полосе частот.

Таким образом, введение в состав устройства для измерения коэффициента отражения радиоволн от РПП разделительной пластины из РПМ - 11, опорного устройства - 9 и нанесение окантовки из РПМ - 13.2 на исследуемый образец РПП - 8 и окантовки из РПМ - 13.2 на эталонную металлическую пластину - 10 позволяет снизить погрешность измерения КО РПП на 2...3 дБ в сверхширокой полосе частот.

Устройство для измерения коэффициента отражения радиоволн от радиопоглощающих покрытий (РПП), содержащее размещенные на каркасе последовательно соединенные устройство ввода и обработки, устройство управления и обмена, устройство развертки и сверхширокополосный (СШП) приемник с приемной антенной, при этом ко второму выходу устройства развертки присоединен генератор СШП сигналов с передающей антенной, а третий выход устройства развертки соединен со вторым входом устройства управления и обмена, а выход СШП приемника присоединен к третьему входу устройства управления и обмена, второй выход которого соединен со входом устройства ввода и обработки, устройство содержит также исследуемый образец РПП и эталонную металлическую пластину, отличающееся тем, что в него введены между приемной и передающей антеннами разделительная пластина из радиопоглощающего материала, установленная на каркасе, и на расстоянии R от передающей антенны - опорное устройство, причем на исследуемый образец РПП и на эталонную металлическую пластину по периметру нанесена окантовка из РПМ сечением А×А, причем

; ,

где Д - максимальный линейный размер исследуемого образца РПП;

λmin, λmax - минимальная и максимальная длины волн исследуемого диапазона.



 

Похожие патенты:

Изобретение относится к радиоизмерительной технике и может быть использовано при создании панорамных измерителей параметров СВЧ устройств. .

Изобретение относится к измерительной технике, в частности к измерениям радиофизических характеристик радиопоглощающих покрытий (РПП). .

Изобретение относится к технике измерений на сверхвысоких частотах (СВЧ) и может быть использовано при создании приборов и систем для определения параметров СВЧ-устройств с стандартных каналах и для антенных измерений.

Изобретение относится к радиотехнике и может использоваться в радиопередающих устройствах. .

Изобретение относится к технике измерений на СВЧ и может быть использовано для измерения комплексного коэффициента отражения оконечных нагрузок в стандартных коаксиальных и волноводных каналах.

Изобретение относится к измерению электрических величин и может быть использовано в производстве существующих и новых поглощающих материалов типа углепластиков, применяется в СВЧ диапазоне, а также для контроля электрических параметров диэлектрической проницаемости и тангенса угла диэлектрических потерь.

Изобретение относится к измерительной технике и может быть использованo для измерения полной входной проводимости антенн. .

Изобретение относится к тестовому блоку базовой станции для тестирования базовой станции в мобильной системе связи, в частности к способу для измерения коэффициента стоячей волны для передающей антенны и приемной антенны, который может тестировать радиоблок базовой станции.

Изобретение относится к области акустических и радиоизмерений и применяется для определения модуля и фазы коэффициента зеркального отражения листовых материалов и плоских поверхностей веществ.

Изобретение относится к радиолокации и может быть использовано для измерения коэффициента отражения по мощности К РПМ ( ц) в сверхширокой полосе частот при различных углах падения ц электромагнитной (ЭМ) волны на радиопоглощающий материал (РПМ)

Изобретение относится к технике сверхвысоких частот и предназначено для измерения коэффициента отражения плоских образцов радиопоглощающего покрытия (РПП) в миллиметровом, сантиметровом и дециметровом диапазоне радиоволн

Изобретение относится к технике измерения на сверхвысоких частотах и предназначено для измерения коэффициента отражения плоских образцов радиопоглощающих материалов в дециметровом и метровом диапазонах длин радиоволн

Изобретение относится к технике сверхвысоких частот (СВЧ), предназначено для измерения коэффициента отражения СВЧ нагрузок в миллиметровом, сантиметровом и дециметровом диапазоне радиоволн и может быть использовано для контроля в процессе производства коэффициента отражения отражающих материалов, например используемых для изготовления рефлекторов антенн

Заявлено устройство относится к измерительной технике и может быть использовано для измерения параметров рассеяния четырехполюсника на СВЧ. Техническим результатом заявленного устройства выступает упрощение и повышение точности устройства для измерения параметров рассеяния четырехполюсника на СВЧ и соответственно упрощение способа измерения. Технический результат достигается благодаря тому, что в устройство дополнительно введены четвертый электрический ключ - на входе измеряемого четырехполюсника, отрезок линии передачи - в интегральную схему, резистор - в ее цепь обратной связи, в качестве измерителя частотных характеристик используют измеритель модуля коэффициента отражения, при этом все четыре электрических ключа выполнены в виде полевых транзисторов с барьером Шотки, все три отрезка линии передачи выполнены длиной, равной одной восьмой длины волны в линии передачи, и волновым сопротивлением, равным волновому сопротивлению линии передачи на входе, сток четвертого полевого транзистора с барьером Шотки соединен с линией передачи на входе на расстоянии от входа измеряемого четырехполюсника, равном одной восьмой длины волны в линии передачи, исток соединен с одним концом дополнительного отрезка линии передачи, другой конец которого заземлен, сток первого полевого транзистора с барьером Шотки соединен с линией передачи на выходе на расстоянии от выхода измеряемого четырехполюсника, равном одной восьмой длины волны в линии передачи, исток соединен с одним концом одного отрезка линии передачи, другой конец которого заземлен, сток второго полевого транзистора с барьером Шотки соединен с линией передачи на выходе на расстоянии от выхода измеряемого четырехполюсника, равном одной четвертой длины волны в линии передачи, исток соединен с одним концом другого отрезка линии передачи, другой конец которого заземлен, сток третьего полевого транзистора с барьером Шотки в цепи обратной связи соединен с линией передачи на выходе измеряемого четырехполюсника, исток соединен с одним концом резистора цепи обратной связи, другой конец которого соединен с одним концом ее емкости, другой конец которой соединен с линией передачи на входе измеряемого четырехполюсника, а на затвор каждого из четырех полевых транзисторов с барьером Шотки подают постоянное управляющее напряжение от соответствующего источника постоянного управляющего напряжения. 4 ил.

Изобретение относится к технике измерений на сверхвысоких частотах. Согласно способу предварительно осуществляют калибровку с помощью плоского эталонного отражателя, затем перпендикулярно оси зеркала по середине расстояния Lфок между фазовым центром облучателя и фокусом зеркала устанавливают эталонный отражатель с известным коэффициентом отражения ГЭТ, измеряют коэффициент отражения S 11 Э Т ( f ) в той же полосе частот и определяют третий коэффициент A 3 Э Т обобщенного полинома P Э Т ( f ) = ∑ A n Э Т exp ( − j n 2 π f L ф о к / c ) , аппроксимирующего разность измеренных коэффициентов отражения, отнесенных к апертуре облучателя: P Э Т ( f ) ≈ ( S 11 Э Т ( f ) − S 11 И А ( f ) ) exp ( j 2 φ И О ( f ) ) , после чего вместо эталонного отражателя устанавливают испытуемый отражатель, измеряют коэффициент отражения на входе измерительной антенны S 11 И О ( f ) в той же полосе частот и определяют третий коэффициент полинома P И О ( f ) = ∑ A n И О exp ( − j n 2 π f L ф о к / c ) , аппроксимирующего разность коэффициентов отражения S 11 И О ( f ) − S 11 И А ( f ) , отнесенных к A 3 И С апертуре облучателя P Э Т ( f ) ≈ ( S 11 И О ( f ) − S 11 И А ( f ) ) exp ( j 2 φ И О ( f ) ) , коэффициент отражения ГИО испытуемого отражателя определяют по формуле Г И О = Г Э Т | A 3 И О | / | A 3 Э Т | 3 . Устройство измерения коэффициента отражения содержит измерительную антенну, эталонный плоский отражатель, прибор измерения комплексной амплитуды отраженного сигнала, СВЧ-кабель, вычислитель. При этом антенна выполнена в виде осесимметричного параболического зеркала с облучателем в его вершине, а на краю зеркала закреплен радиопрозрачный фиксатор с механизмом юстировки положения плоского отражателя. Технический результат изобретения - повышение точности измерения коэффициента отражения. 2 н.п. ф-лы, 5 ил.

Изобретение относится к технике СВЧ измерений. Способ предлагает подачу через развязывающее устройство электромагнитного сигнала от генератора СВЧ на многоэлементный электроакустический преобразователь, нанесенный на кристаллический образец, засветку пучком света от лазера расположенных вдоль многоэлементного электроакустического преобразователя участков оптической среды, пропускная способность которых зависит от уровня поля стоячей электромагнитной волны в многоэлементном электроакустическом преобразователе, регистрацию распределения интенсивности света вдоль преобразователя после прохождения светом участков оптической среды и оценку распределения поля электромагнитной волны в многоэлементном электроакустическом преобразователе по зарегистрированной картине распределения интенсивности света. При этом посредством многоэлементного электроакустического преобразователя возбуждают упругие волны в кристаллическом образце, акустически соединенном с фотоупругой средой, обладающей высоким коэффициентом акустооптического качества и малым затуханием упругих волн, направляют эти волны в фотоупругую среду, фотоупругую среду освещают пучком света необходимой поляризации от лазера, направляя его на возбужденные отдельными элементами многоэлементного электроакустического преобразователя упругие волны под углом Брэгга, и затем регистрируют картину распределения интенсивности света. Технический результат - улучшение параметров преобразователя. 3 ил.

Изобретение относится к области радиолокационных, лазерных и акустических измерений и может использоваться для калибровки доплеровских радаров (лидаров, сонаров) и имитации изменения структуры отраженного сигнала. Заявленное устройство для имитации доплеровского сдвига частоты отраженного сигнала включает антенну, тракт с расположенным на расстоянии четверть длины волны от конца тракта короткозамыкающим pin-диодом, который управляется мультивибратором, причем антенна и тракт делятся пополам и во вторую половину вводится управляемый тем же мультивибратором дополнительный короткозамыкающий pin-диод, расположенный на расстоянии четверть длины волны от конца и сдвинутый по длине тракта на одну восьмую длины волны относительно исходного pin-диода. Техническим результатом является подавление второй (зеркальной) доплеровской компоненты. 5 ил.
Наверх