Устройство для охлаждения и термостабилизации элементов радиоэлектронной аппаратуры (рэа), работающих при циклических тепловых воздействиях

Изобретение относится к радиоэлектронной технике, в частности к охлаждению радиоэлектронной аппаратуры (РЭА), и может быть использовано для охлаждения элементов РЭА, работающих при циклических тепловых воздействиях. Устройство содержит тонкостенный металлический контейнер, заполненный рабочим веществом, внутри которого расположен механизм для развития конвекции в жидкой фазе, имеющий форму «шнека», вращающегося вокруг своей оси за счет электромоторов, находящихся вне емкости и питаемых источником электрической энергии через блок управления, электрически связанный с датчиком температуры, размещенным в объеме рабочего вещества вблизи механизма для развития конвекции в жидкой фазе рабочего вещества. Технический результат - повышение эффективности отвода тепла и точности термостабилизации элементов радиоэлектронной аппаратуры. 1 ил.

 

Изобретение относится к радиоэлектронной технике, в частности к охлаждению радиоэлектронной аппаратуры, и может быть использовано для обеспечения необходимого теплового режима функционирования элементов радиоэлектронной аппаратуры, работающих при циклических тепловых воздействиях.

Прототипом является устройство, описанное в [1]. Оно представляют собой тонкостенный металлический контейнер, заполненный рабочим веществом, на который устанавливаются тепловыделяющие элементы с хорошим тепловым контактом Тепло, рассеиваемое аппаратурой, поглощается за счет скрытой теплоты плавления вещества. Во время работы основная часть тепла поглощается за счет скрытой теплоты плавления вещества. При размещении элементов радиоэлектронной аппаратуры на поверхности металлической емкости процесс проплавления рабочего вещества осуществляется в вертикальном направлении от плоскости установки элемента радиоэлектронной аппаратуры только за счет процесса теплопроводности. При этом для обеспечения движения границы раздела твердой и жидкой фаз от крайнего верхнего до крайнего нижнего слоя рабочего вещества требуется постоянное увеличение температуры верхней оболочки относительно температуры плавления до температуры, обусловленной термическим сопротивлением толщины расплавленного рабочего вещества.

Целью данного изобретения является повышение эффективности отвода тепла и точности термостабилизации элементов радиоэлектронной аппаратуры.

Цель достигается тем, что внутри контейнера установлен механизм для развития конвекции в жидкой фазе рабочего вещества, имеющий форму «шнека», вращающегося вокруг своей оси за счет электромоторов, находящихся вне емкости и питаемых источником электрической энергией через блок управления, электрически связанный с датчиками температуры, размещенными в объеме рабочего вещества вблизи механизма для развития конвекции. Конструкция устройства показана на чертеже.

Устройство содержит тонкостенный металлический контейнер 1, заполненный рабочим веществом 2, имеющим стабильную температуру плавления, совпадающую с температурой статирования размещенного на нем элемента радиоэлектронной аппаратуры 3. Внутри контейнера 1 установлен механизм для развития конвекции в жидкой фазе 4, имеющий форму «шнека», вращающегося вокруг своей оси за счет электромоторов 5, находящихся вне емкости. Питание электромоторов электрической энергией осуществляется блоком управления 6, электрически связанным с датчиком температуры 7, размещенным в объеме рабочего вещества, вблизи механизма для развития конвекции в жидкой фазе 4.

От воздействия окружающей среды элемент радиоэлектронной аппаратуры изолируется теплоизоляцией 8.

Устройство работает следующим образом.

Тепло, поступающее от элемента радиоэлектронной аппаратуры 3, передается тонкостенному металлическому контейнеру 1 и через поверхность соприкосновения рабочему веществу 2. Далее одновременно происходит прогрев рабочего вещества 2 до температуры плавления и процесс плавления, связанный с появлением жидкой фазы рабочего вещества 2 и ее перемещением в вертикальной плоскости в направлении, противоположном размещению элемента радиоэлектронной аппаратуры 3.

До тех пор, пока жидкая фаза расплавленного рабочего вещества 2 не переместиться до места расположения датчика температуры 7, блок управления 6 не осуществляет подвод электрической энергии к механизму для развития конвекции в жидкой фазе 4. При проплавлении рабочего вещества 2 до места расположения датчика температуры 7, с последнего передается электрический сигнал на блок управления 6, которое начинает осуществлять питание электрической энергией электромоторы 5, которые начинают вращаться, приводя в действие механизм для развития конвекции в жидкой фазе 4. Вращение механизма для развития конвекции в жидкой фазе 4 в горизонтальной плоскости способствует появлению и развитию в жидкой фазе рабочего вещества 2 конвекции. При этом перенос тепла от нагреваемой верхней стенки тонкостенного металлического контейнера 1 к плавящейся при постоянной температуре поверхности раздела фаз осуществляется в основном не теплопроводностью, а за счет циркуляции снизу вверх и обратно нагретых и не нагретых слоев жидкости. Значение теплового сопротивления расплавленного слоя рабочего вещества 2 при этом значительно снижается, что способствует повышению интенсивности теплообмена между стенкой металлического контейнера 1 и рабочим веществом 2.

При прекращении работы элемента радиоэлектронной аппаратуры 3 будет происходить обратный процесс, т.е. по мере затвердевания рабочего вещества 2 и перемещении границы раздела фаз от поверхности, противоположной размещению радиоэлектронного элемента 3, к поверхности его установки, посредством блока управления 6 в соответствии с сигналами с датчика температуры 7 будет происходить отключение механизма для развития конвекции в жидкой фазе 4 от питания и соответственно исключение из процесса теплообмена в металлическом контейнере 1 с рабочим веществом 2.

ЛИТЕРАТУРА

1. Алексеев В.А. Охлаждение радиоэлектронной аппаратуры с использованием плавящихся веществ. М.: Энергия, 1975.

Устройство для охлаждения и термостабилизации элементов радиоэлектронной аппаратуры (РЭА), работающих при циклических тепловых воздействиях, содержащее тонкостенный металлический контейнер с рабочим веществом, имеющим стабильную температуру плавления, совпадающую с температурой статирования размещенного на нем элемента радиоэлектронной аппаратуры (РЭА), отличающееся тем, что внутри контейнера установлен механизм для развития конвекции в жидкой фазе рабочего вещества, имеющий форму «шнека», вращающегося вокруг своей оси за счет электромоторов, находящихся вне емкости и питаемых источником электрической энергии через блок управления, электрически связанный с датчиком температуры, размещенным в объеме рабочего вещества вблизи механизма для развития конвекции.



 

Похожие патенты:

Изобретение относится к радиоэлектронике и предназначено для использования при конструировании шкафов для размещения радиоэлектронной аппаратуры с выделением тепловой мощности при ее работе.

Изобретение относится к вентиляции с принудительной циркуляцией воздуха, например к удалению тепла при помощи охладителей от нагретых элементов компьютера. .

Изобретение относится к электронике и может быть использовано в комплексе бортового оборудования летательных аппаратов при компоновке модулей, содержащих большое количество электрических связей.

Изобретение относится к радиоэлектронной технике, в частности к охлаждению радиоэлектронной аппаратуры (РЭА), и может быть использовано для охлаждения элементов РЭА, работающих при циклических тепловых воздействиях.

Изобретение относится к радиоэлектронной технике, в частности к охлаждению радиоэлектронной аппаратуры, и может быть использовано для охлаждения элементов радиоэлектронной аппаратуры, работающих при циклических тепловых воздействиях.

Изобретение относится к радиоэлектронной технике, в частности к охлаждению радиоэлектронной аппаратуры, и может быть использовано для охлаждения элементов радиоэлектронной аппаратуры, работающих при циклических тепловых воздействиях.

Изобретение относится к радиоэлектронной технике, в частности к охлаждению радиоэлектронной аппаратуры (РЭА), и может быть использовано для охлаждения элементов РЭА, работающих при циклических тепловых воздействиях.

Изобретение относится к области теплотехники и может быть использовано для передачи значительных потоков теплоты от устройства к устройству, от окружающей среды к устройству или наоборот и, в частности, для охлаждения тепловыделяющих элементов компьютера.

Изобретение относится к электротехнике, в частности к устройствам для охлаждения полупроводниковых приборов, и может быть использовано в силовых электротехнических устройствах для охлаждения элементов с высоким тепловыделением.

Изобретение относится к области электроники, а именно к отводу тепла, и может быть использовано в комплексе бортового оборудования летательных аппаратов для решения задач повышения эффективности теплоотвода и защиты от электромагнитных помех.

Изобретение относится к области механики, в частности к способам и устройствам отработки тепловой защиты объектов от мощных направленных тепловых нагрузок с помощью защитного экрана.

Изобретение относится к электронной технике, в частности к устройствам охлаждения элементов и узлов аппаратуры неразрушающего контроля, технической и медицинской диагностики, бытовой аппаратуры.

Изобретение относится к электротехнике, к радиоэлектронной аппаратуре, в частности к устройствам ее охлаждения. .

Изобретение относится к системам обеспечения температурных режимов и может быть использовано при воздушном охлаждении оборудования, в том числе радиоэлектронной аппаратуры (РЭА), расположенной на подвижных носителях.

Изобретение относится к преобразовательной технике. .

Изобретение относится к радиоэлектронике и может быть использовано при конструировании приборных шкафов и стоек, в которые встраиваются съемные модули с кондуктивным теплоотводом.

Изобретение относится к устройствам для охлаждения электронной аппаратуры и может быть использовано в геофизической сейсморазведке. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для диагностики систем охлаждения различных комплексов, применяемых в радиолокации, связи, навигации, телевидении и других областях техники
Наверх