Композиционный материал для разделения газов, мембрана и мембранный модуль из этого материала

Изобретение относится к газоразделительным композиционным мембранам и мембранным модулям на их основе и может найти применение в процессах разделения газовых смесей, содержащих углекислый газ и некислородные системы, такие как водород, низшие углеводороды, азот, метан, этилен, ацетилен и др. Композиционный материал для разделения газов содержит слой пористого субстрата с пористостью не менее 30% и нанесенный на него селективный слой из фольги из вспененного графита с нитратной предысторией. Техническим результатом изобретения является получение мембран с высокой селективностью по таким соединениям, как бутан/CO2 и пентан/СО2, водород/углекислый газ, при высоком потоке углеводородов и водорода. 3 н. и 4 з.п. ф-лы, 2 ил., 3 табл.

 

Область техники

Изобретение относится к газоразделительным композиционным мембранам и мембранным модулям на их основе и может найти применение в процессах разделения газовых смесей, содержащих углекислый газ и некислородные системы, такие как водород, низшие углеводороды, азот, метан, этилен, ацетилен и др. Изобретение может найти применение в химической, нефтехимической и других областях промышленности.

Предшествующий уровень техники

В заявке JP 2001220115 раскрывается пористая мембрана, выполненная из графита со степенью кристалличности более 75%, включающая мелкие непрерывные поры со средней величиной отверстия 0.05-10 мкм. Такая мембрана обеспечивает легкое проникновение материала от одной поверхности к другой.

Наиболее близкое техническое решение раскрывается в заявке JP 2005138028.

Композиционный материал для разделения газов последовательно состоит из пористого субстрата на основе углерода, нанесенного на субстрат промежуточного слоя графита и нанесенного на слой графита слоя, содержащего углеродные трубки.

Данный материал применяется для изготовления мембран и мембранных модулей, пригодных для разделения газов некислородных систем.

Однако в предложенном техническом решении не достигается высокой селективности разделения газовых смесей при высоком потоке по парам водород /углекислый газ, бутан/ углекислый газ и пентан/ углекислый газ.

Раскрытие изобретения

Задачей изобретения является создание термоустойчивого материала, устойчивого к парам углеводородов и органических растворителей для газоразделительных мембран, обладающего высокой селективностью по таким парам, как бутан/СО2 и пентан/СО2, водород/углекислый газ, при высоком потоке углеводородов и водорода.

Поставленная задача решается композиционным материалом для разделения газов, содержащим слой пористого субстрата и нанесенный на него селективный слой, содержащий графит, в соответствии с которым селективный слой выполнен из фольги из вспененного графита с нитратной предысторией, а пористый субстрат выполнен с пористостью не менее 30% и диаметром пор не менее 1 мкм.

В частных воплощениях изобретения поставленная задача решается материалом, селективный слой которого выполнен из фольги с плотностью 0,8-1,3 г/см3.

Целесообразно, чтобы селективный слой был выполнен из фольги из вспененного графита с фракционным составом 0,3-0,6 мм.

В наилучших воплощениях изобретения толщина селективного слоя составляет 200-600 мкм.

Поставленная задача решается также мембраной для разделения газов, выполненной из упомянутого композиционного материала, содержащего слой пористого субстрата с пористостью не менее 30% и диаметром пор не менее 1 мкм и нанесенный на него селективный слой, выполненный из фольги из вспененного графита с нитратной предысторией.

Поставленная задача также решается мембранным модулем для разделения газов, выполненным из двух мембран, скрепленных вместе по слоям пористого субстрата селективными слоями наружу.

В частных воплощениях изобретения мембранный модуль может быть выполнен в форме диска.

Сущность изобретения состоит в следующем.

В результате проведения исследований было обнаружено, что графитовая фольга, выполненная из пенографита с нитратной предысторией, может быть использована в качестве селективного слоя газоразделительных материалов, мембран на их основе и мембранных устройств (модулей).

Под вспененным графитом (или пенографитом) понимается терморасширенный графит, полученный по известным технологиям путем химического или электрохимического окисления в азотной кислоте, последующего гидролиза, промывки, сушки и вспенивания в интервале температур от 250 до 1000.

Фольга, полученная из пенографита путем прокатки в валках, обладает рядом уникальных свойств, важнейшими из которых являются гибкость, хорошая электропроводность и теплопроводность.

Фольга характеризуется пористой структурой. Селективность может быть обусловлена высоким содержанием микропор в фольге с диаметром порядка 1 нм, позволяющим сохранить высокий уровень потока водорода и легко конденсируемых на стенках пор бутана и пентана при пониженном потоке углекислого газа, сродством СО2 к материалу матрицы, приводящим к дополнительному снижению проницаемости СО2, а также пористостью субстрата не менее 30%.

Изобретение иллюстрируется чертежами.

Фиг.1 - схематическое изображение мембраны.

Фиг.2 - схематическое изображение мембранного модуля.

Позиции означают следующее:

1 - селективный слой фольги на основе вспененного графита;

2 - слой пористого субстрата;

3 - герметик.

Изобретение осуществляется следующим образом.

Композиционный материал и мембрана на его основе (см. фиг.1), используемая, в частности, для извлечения СО2 из газовых смесей с водородом и низшими углеводородами, представляют собой бислойную композицию с селективным слоем 1 из фольги на основе вспененного графита, нанесенным на пористую подложку 2 с диаметром пор не менее 1 мкм и пористостью не менее 30%. Толщина селективного слоя составляет 200-600 мкм.

Мембранный модуль представляет собой две мембраны, скрепленные вместе по субстрату селективными слоями 1 наружу с помощью герметика 3.

Для производства фольги был использован вспененный графит с нитратной предысторией, полученный электрохимическим окислением в азотной кислоте и вспениванием с использованием высокоскоростных горелочных устройств.

Фольгу получали путем прокатки пенографита в валках до плотности от 0,3 до 1,5 г/см3.

Исследования фольги с разной плотностью показали, что наилучшими селективными свойствами обладает фольга с плотностью от 0,8 до 1,3 г/см3 и фракционным составом 0,3-0,6, хотя технический результат может быть достигнут и при других значениях плотности фракционного состава.

Толщина селективного слоя для достижения лучших свойств составляет 200-600 мкм.

Субстрат может быть выполнен из любого пригодного пористого материала, пористость которого превышает 30%. Таким материалом может быть графит, металл, сплав и т.д.

В наилучших воплощениях изобретения средняя величина пор должна быть не менее 1 мкм.

Пример осуществления изобретения

Для изготовления материала, мембраны на его основе и мембранного модуля в качестве селективного слоя использовали графитовую фольгу ГРАФЛЕКС® толщиной 600 мкм, полученную из пенографита с нитратной предысторией. Плотность фольги составляла 0.97 г/см3. Фольгу накладывали на пористый субстрат, выполняющий функцию подложки мембраны (в данном случае использована неорганическая пористая подложка из нержавеющей стали SS316L с диаметром пор 3 мкм).

На основе таких мембран изготавливали дисковый газоразделительный мембранный модуль (фиг.2). Для этого две мембраны дисковой формы соединяли между собой с помощью герметика по слоям пористого субстрата селективными слоями наружу.

Мембранный модуль работает следующим образом.

Сырье поступает на селективный слой мембраны. Наиболее проницаемые компоненты СО2-содержащей смеси (водород и углеводороды) через подложку поступают в коллектор, из которого удаляются в виде пермеата. Обогащенная по СО2 смесь удаляется из модуля в виде ретентата.

Полученные результаты по проницаемости газов и низших углеводородов через мембрану представлены в таблице 1.

В таблице 2 приведены данные по влиянию фракционного состава фольги на проницаемость.

В таблице 3 приведены данные по влиянию плотности мембранного материала на проницаемость.

Как следует из представленных результатов, данная мембрана обладает значительной селективностью по таким парам, как бутан/СО2 и пентан/СО2, водород/углекислый газ, при высоком потоке углеводородов и водорода.

При этом высокая селективность углеводородов относительно углекислого газа может быть связана с повышенной адсорбцией легкоконденсируемых молекул углеводородов на стенках микропор. Селективность по паре водород/CO2 превышает значения, характерные как для полимерных мембран, так и для пористых структур, что может быть связано как с размером пор углеродной матрицы (1-2 нм), так и с особенностями сорбции молекул СО2 на стенках пор углеродной матрицы.

Таким образом, с помощью предложенной композиционной мембраны можно достичь проницаемости по водороду в диапазоне 122- 770 л/м2 час атм, бутану 36-482 л/м2 час атм, пентану 220-630 л/м2 час атм и селективности разделения пары водород/диоксид углерода не менее 12, пентан/диоксид углерода не менее 10 при преимущественной проницаемости водорода и низших углеводородов в сравнении с двуокисью углерода.

Кроме того, по сравнению с известным техническим решением заявленная мембрана может быть получена практически любой площади без потери механической прочности. Материал обеспечивает не только высокую селективность по паре водород /углекислый газ, но по парам бутан/ углекислый газ и пентан/ углекислый газ, что не обеспечивается ни высокоселективными углеродными мембранами типа молекулярных сит (например, для мембраны Resol PF селективность водород /углекислый газ составляет 4,6 при селективности пропан/ углекислый газ более 100), ни полимерными газоразделительными мембранами (например, для мембраны на основе полидиметилсилоксана селективность углекислый газ/водород составляет 5.1 при селективности бутан/ углекислый газ 1.6).

Таблица 1


п/п
Параметры фольги

графитовой
Параметры субстрата

пористого
Проницаемость, л/м2 час атмСелективность, отн.ед
Плотность, г/см3Толщина слоя, мкмПористость, %Величина пор, мкмПо

водороду
По

бутану
По

пентану
Н2/CO2Бутан/ CO2Пентан/ CO2
10.9760030177249063016913
21200301493482308222214

Таблица 2


п/п
Параметры графитовой фольгиПараметры пористого субстратаПроницаемость, л/м2 час атмСелективность, отн. ед.
Плотность, г/см3Фракция,

мкм
Толщина

слоя, мкм
Пористость,

%
Величина

пор, мкм
По

водороду
По CO2Н2/СО2
11<0.3200301177325.5
210.3-0.620030195519
31>0.6200301246.83.5

Таблица 3
№п/пПараметры графитовой фольгиПараметры пористого субстратаПроницаемость, л/м2 час атмСелективность, отн. ед.
Плотность, г/см3Толщина слоя, мкмПористость, %Величина пор, мкмПо водородуПо CO2Н2/CO2
10.820030110002154.6
212003014932222
31.32003011921612

1. Композиционный материал для разделения газов, содержащий слой пористого субстрата и нанесенный на него графитсодержащий селективный слой, отличающийся тем, что селективный слой представляет собой фольгу из терморасширенного графита, полученного вспениванием графита, окисленного азотной кислотой, а пористый субстрат имеет пористость не менее 30% при диаметре пор не менее 1 мкм.

2. Материал по п.1, отличающийся тем, что селективный слой выполнен из фольги с плотностью 0,8-1,3 г/см3.

3. Материал по п.1, отличающийся тем, что селективный слой выполнен из фольги из вспененного графита с фракционным составом 0,3-0,6 мм.

4. Материал по п.1, отличающийся тем, что толщина селективного слоя составляет 200-600 мкм.

5. Мембрана для разделения газов, отличающаяся тем, что она выполнена из композиционного материала, содержащего пористый субстрат с пористостью не менее 30% при диаметре пор не менее 1 мкм с нанесенным на субстрат селективным слоем в виде фольги из терморасширенного графита, полученного вспениванием графита, окисленного азотной кислотой.

6. Мембранный модуль для разделения газов, отличающийся тем, что он выполнен из двух мембран в соответствии с п.5, скрепленных вместе по слоям пористого субстрата селективными слоями наружу.

7. Модуль по п.6, отличающийся тем, что он выполнен в форме диска.



 

Похожие патенты:

Изобретение относится к области мембранных технологий, в частности к газопроницаемым мембранам из неорганического материала, которые могут быть использованы для разделения газов при получении синтез-газа из метана, интенсифицировать протекание таких реакций, как разложение метанола в синтез газа, окисление СО и окислительная конденсация метана в легкие углеводороды.

Изобретение относится к области химического машиностроения. .

Изобретение относится к области изготовления мембран с отверстиями нанометрового размера, применяемых в медицине, фармацевтике, биотехнологии, аналитической химии, электронике.

Изобретение относится к области изготовления селективных мембран для молекулярной фильтрации газовых смесей и может найти применение в компактных топливных элементах.

Изобретение относится к области получения материалов с заданной пористостью, которые могут быть использованы в производстве мембран. .
Изобретение относится к области изготовления и применения мембранных фильтров из неорганических материалов и может быть использовано в различных отраслях производства для очистки и концентрирования растворов, обработки сточных вод, очистки питьевой и технологической воды и т.д.

Изобретение относится к неорганической химии и используется для получения материалов для фильтрации и мембранного разделения жидких и газовых сред, содержащих цеолитный слой на подложке.

Изобретение относится к мембранному разделению газов и служит для извлечения и кислых газов из природного газа в скважинах при добыче углеводородов. .

Изобретение относится к процессам восстановления очищенных продуктов из жидких смесей путем интегрированной фракционной перегонки, а также к устройствам перегонки и мембранного разделения.

Изобретение относится к фильтрующему устройству для удаления биологических загрязнений. .

Изобретение относится к мембранному разделению газов и служит для извлечения и кислых газов из природного газа в скважинах при добыче углеводородов. .

Изобретение относится к сорбционным методам разделения газовых смесей и дегазации жидкостей и может быть использовано в пищевой, медицинской, химической, нефтехимической и других отраслях промышленности.

Изобретение относится к химической, нефтехимической, газовой промышленности и может быть использовано при извлечении или концентрировании целевых компонентов из многокомпонентной газовой смеси, например гелия из природного газа.

Изобретение относится к химической технологии, а именно к способу получения тетрафторсилана и газу на его основе. .

Изобретение относится к способу регенерации и выделения оксифторидов серы из газовых смесей. .

Изобретение относится к автотермическому каталитическому реформингу с водяном паром углеводородного сырья и направлено на получение газа, обогащенного водородом и/или оксидом углерода.

Изобретение относится к области газофазной полимеризации. .

Изобретение относится к области технологических систем и процессов и может быть использовано для получении инертной технологической газовой среды преимущественно в нефтегазовой промышленности с целью предупреждения пожаров и взрывов в процессе бурения, освоения и эксплуатации нефтяных и газовых скважин, а также для их обработки, например удаления песчаных и глиняных пробок, осушения и обезвоживания или при проведении ремонтных работ нефтегазового оборудования, например трубопроводных систем жидких и газообразных углеводородов
Наверх