Устройство для определения частоты, вида модуляции и манипуляции принимаемых сигналов

Предлагаемое устройство относится к области радиоэлектроники и может быть использовано для определения несущей частоты, вида модуляции и манипуляции сигналов, принимаемых в заданном диапазоне частот. Устройство содержит приемную антенну 1, входную цепь 2, блок 3 поиска, усилитель 4 высокой частоты, гетеродин 5, смеситель 6, усилитель 7 промежуточной частоты, детектор 8, видеоусилитель 9, устройство 10 формирования частотной развертки, электронно-лучевую трубку 11, первый 12, второй 24 и третий 46 ключи, первый 13, второй 28, третий 29, четвертый 31 и пятый 33 амплитудные детекторы, первый 14, второй 27 и третий 32 фильтры верхних частот, первый 15, второй 19 и третий 26 фильтры нижних частот, первый 16 и второй 20 квадраторы, первый 17 и второй 22 делители напряжений, частотный детектор 18, первый 21, второй 50, третий 51 и четвертый 52 анализаторы спектра, первый 23, второй 30, третий 34, четвертый 53, пятый 54 и шестой 55 блоки сравнения, фазовый детектор 25, анализатор 35 комплексного спектра, анализатор 36 линейного члена фазового спектра, анализатор 37 симметрии амплитудного спектра, первый 38, второй 39, третий 56, четвертый 57 и пятый 58 преобразователи аналог-код, первый 40, второй 42, третий 44, четвертый 61, пятый 62 и шестой 63 элементы совпадения И, преобразователь 45 код-напряжение, умножитель 47 фазы на два, умножитель 48 на четыре, умножитель 49 на восемь. Технический результат - расширение функциональных возможностей устройства путем определения кратности фазовой манипуляции принимаемого сигнала. 3 ил.

 

Предлагаемое устройство относится к области радиоэлектроники и может быть использовано для определения несущей частоты, вида модуляции и манипуляции сигналов, принимаемых в заданном диапазоне частот.

Известны способы и устройства для определения частоты, вида модуляции и манипуляции принимаемых сигналов (авторские свидетельства СССР №№524138, 620907, 868614, 1000930, 1012152, 1180804, 1187095, 1272266, 1290192, 1354124, патенты РФ №№2124216, 2230330, 2276375, патент США №4443801, Вакин С.А., Шустов Л.Н. Основы радиопротиводействия и радиотехнической разведки. М.: Сов. радио, 1968, с.386-396, рис.10.3 и другие).

Из известных устройств наиболее близким к предлагаемому является устройство для реализации "Способа определения частоты" (патент РФ №2276375, G01R 25/00, 2004), которое и выбрано в качестве базового объекта.

Указанное устройство обеспечивает поиск сигналов в заданном диапазоне частот путем перестройки супергетеродинного приемника, формирования частотной развертки на экране электронно-лучевой трубки (ЭЛТ), преобразование по частоте принимаемого сигнала, усиление его по напряжению, детектирование и подачу на вертикально-отклоняющие пластины ЭЛТ. В результате на экране образуется импульс, по положению которого на частотной развертке определяют несущую частоту принимаемого сигнала. После этого последовательно определяют вид модуляции (амплитудная или угловая, фазовая или частотная) или манипуляции (амплитудная, частотная или фазовая) принимаемого сигнала.

Одной из характерных особенностей современных и перспективных радиоэлектронных средств (РЭС) является широкое использование сложных сигналов с многократной фазовой манипуляцией.

В настоящее время известно большое количество кодов, применяемых для фазовой манипуляции (коды Баркера, Гаймюллера, Велти, Голея, Хаффмана, Френца и другие).

При этом на одной несущей частоте при использовании фазовой манипуляции можно передавать сообщения от одного, двух, трех и так далее источников, добиваясь существенного повышения скорости передачи информации в канале связи.

Если на одной несущей частоте дискретная информация передается от одного источника сообщений, то целесообразно использовать двухкратную (бинарную) фазовую манипуляцию [ФМн-2, φk(t)={0, π}]. Для передачи сообщений от двух источников используется четырехкратная фазовая манипуляция [ФМн-4, ]. Для передачи сообщений от четырех источников используется восьмикратная фазовая манипуляция [ФМн-8, ].

В общем случае на одной несущей частоте одновременно можно передавать сообщения от m источников, используя для этого m-кратную фазовую манипуляцию.

Однако целесообразными являются двух-, четырех- и восьмикратная фазовые манипуляции, которые и нашли широкое применение на практике. Дальнейшее повышение кратности фазовой манипуляции ограничивается тем, что уменьшается расстояние между элементарными сигналами и в существенной мере снижается помехоустойчивость канала связи.

Известное устройство не позволяет определить кратность фазовой манипуляции принимаемого сигнала.

Технической задачей изобретения является расширение функциональных возможностей устройства путем определения кратности фазовой манипуляции принимаемого сигнала.

Поставленная задача решается тем, что устройство для определения частоты, вида модуляции и манипуляции принимаемых сигналов, содержащее в соответствии с ближайшим аналогом последовательно включенные приемную антенну, входную цепь, усилитель высокой частоты, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, детектор, видеоусилитель и вертикально-отклоняющие пластины электронно-лучевой трубки, горизонтально-отклоняющие пластины которой соединены с выходом устройства формирования частотной развертки, последовательно подключенные к выходу усилителя высокой частоты, первый ключ, второй вход которого соединен с выходом детектора, первый амплитудный детектор, первый фильтр верхних частот, первый квадратор, первый делитель напряжений, второй вход которого через первый фильтр нижних частот соединен с выходом первого амплитудного детектора, первый блок сравнения, два выхода которого являются первым и вторым выходами устройства, последовательно подключенные к выходу ключа частотный детектор, второй фильтр нижних частот, второй квадратор и второй делитель напряжений, второй вход которого через первый анализатор спектра соединен с выходом первого ключа, а выход подключен ко второму входу первого блока сравнения, последовательно подключенные к выходу первого ключа второй ключ, второй вход которого соединен со вторым выходом устройства, фазовый детектор, третий фильтр нижних частот, второй амплитудный детектор и второй блок сравнения, второй вход которого через последовательно включенные второй фильтр верхних частот и третий амплитудный детектор соединен с выходом фазового детектора, а два выхода являются третьим и четвертым выходами устройства, последовательно подключенные к выходу частотного детектора третий фильтр верхних частот, пятый амплитудный детектор и третий блок сравнения, второй вход которого через четвертый амплитудный детектор соединен с выходом второго фильтра нижних частот, а два выхода являются пятым и шестым выходами устройства, последовательно подключенные к выходу первого ключа анализатор комплексного спектра, анализатор линейного члена фазового спектра, первый преобразователь аналог-код и первый элемент совпадения И, второй вход которого через последовательно включенные анализатор симметрии амплитудного спектра и второй преобразователь аналог-код соединен со вторым выходом анализатора комплексного спектра, а выход является седьмым выходом устройства, последовательно подключенные к выходу второго преобразователя аналог-код первый инвертор и второй элемент совпадения И, второй вход которого соединен с выходом первого преобразователя аналог-код, а выход является восьмым выходом устройства, последовательно подключенные к выходу первого преобразователя аналог-код второй инвертор и третий элемент совпадения И, второй вход которого соединен с выходом первого инвертора, а выход является девятым выходом устройства, отличается от ближайшего аналога тем, что оно снабжено преобразователем код-напряжение, третьим ключом, третьим и четвертым инверторами и тремя каналами обработки, каждый из которых состоит из последовательно включенных умножителя фазы, анализатора спектра, блока сравнения, второй вход которого соединен с выходом первого анализатора спектра, преобразователя аналог-код и элемента совпадения И, причем к девятому выходу устройства последовательно подключены преобразователь код-напряжение, третий ключ, второй вход которого соединен с выходом первого ключа и три канала обработки, второй вход элемента совпадения И первого канала обработки соединен с выходом преобразователя аналог-код второго канала обработки, а выход является десятым выходом устройства, второй вход элемента совпадения И второго канала обработки через третий инвертор соединен с выходом преобразователя аналог-код первого канала обработки, а выход является одиннадцатым выходом устройства, второй вход элемента совпадения И третьего канала обработки соединен через четвертый инвертор с выходом преобразователя аналог-код второго канала обработки, а выход является двенадцатым выходом устройства, в первом канале обработки фаза умножается в два раза, во втором - в четыре раза и в третьем - в восемь раз.

Структурная схема предлагаемого устройства представлена на фиг.1. Временные диаграммы, иллюстрирующие сигналы с амплитудной, частотной и фазовой манипуляцией, показаны на фиг.2. Пространство признаков распознавания указанных сигналов изображено на фиг.3.

Устройство содержит последовательно включенные приемную антенну 1, входную цепь 2, усилитель 4 высокой частоты, смеситель 6, второй вход которого соединен с выходом гетеродина 5, усилитель 7 промежуточной частоты, детектор 8, видеоусилитель 9 и вертикально-отклоняющие пластины электронно-лучевой трубки (ЭЛТ) 11, горизонтально-отклоняющие пластины которой соединены с устройством 10 формирования частотной развертки. Управляющие входы входной цепи 2, усилителя 4 высокой частоты, гетеродина 5 и устройства 10 формирования частотной развертки соединены с соответствующими выходами блока 3 поиска, в качестве которого может быть использован генератор пилообразного напряжения или электрический мотор. К выходу усилителя 4 высокой частоты последовательно подключены ключ 12, второй вход которого соединен с выходом детектора 8, амплитудный детектор 13, фильтр 14 верхних частот, первый квадратор 16, первый делитель 17 напряжений, второй вход которого через первый фильтр 15 нижних частот соединен с выходом амплитудного детектора 13, и первый блок 23 сравнения, два выхода которого являются выходами устройства. К выходу ключа 12 последовательно подключены частотный детектор 18, второй фильтр 19 нижних частот, второй квадратор 20 и второй делитель 22 напряжений, второй вход которого через анализатор 21 спектра соединен с выходом ключа 12, а выход подключен ко второму входу первого блока 23 сравнения. К выходу ключа 12 последовательно подключены ключ 24, второй вход которого соединен со вторым выходом первого блока 23 сравнения, фазовый детектор 25, третий фильтр 26 нижних частот, второй амплитудный детектор 28 и второй блок 30 сравнения, второй вход которого через последовательно включенные второй фильтр 27 верхних частот и третий амплитудный детектор 29 соединен с выходом фазового детектора 25, а два выхода являются выходами устройства. К выходу частотного детектора 18 последовательно подключены третий фильтр 32 верхних частот, пятый амплитудный детектор 33 и третий блок 34 сравнения, второй вход которого через четвертый амплитудный детектор 31 соединен с выходом фильтра 19 нижних частот, а два выхода являются выходами устройства. К выходу ключа 12 последовательно подключены анализатор 35 комплексного спектра, анализатор 36 линейного члена фазового спектра, первый преобразователь 38 аналог-код и первый элемент совпадения И 40, выходное напряжение которого является признаком частотной манипуляции (ЧМн) принимаемого сигнала. Ко второму выходу анализатора 35 комплексного спектра последовательно подключены анализатор 37 симметрии амплитудного спектра и второй преобразователь 39 аналог-код, выход которого соединен со вторым входом первого элемента совпадения И 40. К выходу первого преобразователя 38 аналог-код подключен второй элемент совпадения 42, второй вход которого через первый инвертор 41 соединен с выходом второго преобразователя 39 аналог-код, а выходное напряжение является признаком амплитудной манипуляции (АМн) принимаемого сигнала. К выходу первого преобразователя 38 аналог-код последовательно подключены второй инвертор 43 и третий элемент совпадения И 44, второй вход которого соединен с выходом первого инвертора 41, а выходное напряжение является признаком фазовой манипуляции (ФМн) принимаемого сигнала. К выходу элемента совпадения И 44 последовательно подключены преобразователь 45 цифра-напряжение, ключ 46, второй вход которого соединен с выходом ключа 12, и три канала обработки, каждый из которых состоит из последовательно включенных умножителя фазы 47 (48, 49), анализатора спектра 50 (51, 52), блока 53 (54, 55) сравнения, второй вход которого соединен с выходом анализатора 21 спектра, преобразователя аналог-код 56 (57, 58) и элемента совпадения И 61 (62, 63). Второй вход первого элемента совпадения И 61 соединен с выходом преобразователя 57 аналог-код второго канала обработки. Второй вход элемента совпадения И 62 через инвертор 59 соединен с выходом преобразователя 56 аналог-код первого канала обработки. Второй вход элемента совпадения И 63 через инвертор 60 соединен с выходом преобразователя 57 аналог-код второго канала обработки.

При этом в умножителе 47 первого канала обработки фаза умножается в два раза, в умножителе 48 фаза умножается в четыре раза и в умножителе 49 фаза умножается в восемь раз.

Появление логической единицы на выходе элемента совпадения И 61 свидетельствует о двухкратной фазовой манипуляции принимаемого сигнала. Появление логической единицы на выходе второго элемента совпадения И 62 свидетельствует о четырехкратной фазовой манипуляции. Появление логической единицы на выходе элемента совпадения И 63 свидетельствует о восьмикратной фазовой манипуляции принимаемого сигнала.

Предлагаемое устройство работает следующим образом.

Поиск сигналов в заданном диапазоне частот Дf осуществляется с помощью блока 3 поиска, который по пилообразному закону согласованно изменяет настройку входной цепи 2, усилителя 4 высокой частоты и гетеродина 5. Одновременно блок 3 поиска управляет устройством 10 формирования частотной развертки на экране электронно-лучевой трубки 11.

Принимаемый сигнал после преобразования по частоте в смесителе 6 и усиления в усилителе 7 промежуточной частоты, детектирования в детекторе 8 и дополнительного усиления в видеоусилителе 9 подается на вертикально-отклоняющие пластины ЭЛТ 11, в результате чего на экране образуется импульс (частотная метка), положение которого на частотной развертке определяет несущую частоту принимаемого сигнала.

Модулированное колебание в самой общей форме может быть записано:

Здесь ωc, φ(f) - несущая частота и фаза колебания;

φ(t)=∫ω(t)dt+ϕ(t)+φс - фаза колебания;

U(t)=Uc[1+m·sinΩt] - огибающая колебания;

где Uс - амплитуда несущей в отсутствие модуляции;

m - коэффициент амплитудной модуляции;

Ω - частота модулирующей функции.

Для сигнала с амплитудной модуляцией (AM) выражение (1) будет иметь вид:

Если АМ-сигнал поступает на вход амплитудного детектора 13 с выхода усилителя 4 высокой частоты через открытый ключ 12, то на его выходе образуется напряжение:

Следовательно, на выходе амплитудного детектора 13 при воздействии на его вход АМ-сигнала выделяется модулирующая функция, в которой заложена полезная информация.

Если на вход амплитудного детектора 13 поступает сигнал с угловой модуляцией (УМ), то при этом U(t)=Uc=const и выражение (1) принимает вид:

т.е.

Из полученных выражений видно, что при отсутствии паразитной УМ при амплитудной модуляции колебания и паразитной AM при угловой модуляции колебания различить амплитудно-модулированный сигнал от сигнала с угловой модуляцией можно, пропуская его через амплитудный детектор 13.

В качестве информативных признаков распознавания сигналов с амплитудной и угловой модуляциями могут быть использованы следующие параметры:

- эффективный коэффициент амплитудной модуляции

где - среднеквадратическое значение переменного напряжения сигнала и шума на нагрузке амплитудного детектора 13;

M(t)=ΔU(t)·sinΩt - модулирующая функция;

- эффективная девиация частоты

где Т - длительность сигнала;

- ширина спектра Δωc принимаемого сигнала.

Для АМ-сигнала указанные признаки равны:

mэф=0; ;

K0≅1÷1,5; m0≅2-3.

Для УМ-сигнала:

mэф≥m0; .

Эффективный коэффициент амплитудной модуляции mэф определяется с помощью амплитудного детектора 13, фильтра 14 верхних частот, фильтра 15 нижних частот, квадратора 16 и делителя 17 напряжений.

Эффективная девиация частоты Δω∂эф определяется с помощью частотного детектора 18, фильтра 19 нижних частот, второго квадратора 20 и второго делителя 22 напряжений.

Ширина амплитудного спектра Δωc принимаемого сигнала определяется с помощью анализатора 21 спектра.

Отношение Δωc/Δω∂эф определяется в делителе 22 напряжений. В первом блоке 23 сравнения измеренные величины mэф и Δωc/Δω∂эф сравниваются с определенными численными значениями m0 и K0. По результатам сравнения определяется вид модуляции (амплитудная или угловая) принимаемого сигнала.

Если принимаемый сигнал имеет угловую модуляцию, то постоянное напряжение со второго выхода блока 23 сравнения подается на управляющий вход ключа 24, открывая его. В исходном состоянии ключи 12 и 24 всегда закрыты. При этом принимаемый сигнал с угловой модуляцией с выхода усилителя 4 высокой частоты через открытые ключи 12 и 24 поступает для дальнейшей обработки.

Следует отметить, что распознавание вида угловой (частотная или фазовая) модуляции является сложной технической задачей. Это связано с трудностью выделения информативных признаков, по которым можно отличить сигнал с частотной модуляцией (ЧМ) от сигнала с фазовой модуляцией (ФМ), так как частотная и фазовая модуляции в силу интегродифференциальной связи между частотой и фазой колебания имеют много общего друг с другом, что и оправдывает существование объединенного термина "угловая модуляция". Заметим, что в силу указанной связи частотная модуляция всегда сопровождается изменением фазы модулируемого колебания, а при осуществлении фазовой модуляции всегда имеет место изменение частоты радиосигнала. Эти изменения неразрывно связаны друг с другом и все дело в том, какое из них является первичным, т.е. какое из них пропорционально модулирующей функции. При частотной модуляции, очевидно, первичным является изменение частоты, а при фазовой модуляции - изменение фазы высокочастотных колебаний.

Следует отметить, что распознавание ЧМ- и ФМ-сигналов при гармонической модулирующей функции вообще невозможно. Однако реальные колебания имеют модулирующую функцию значительно более сложную, чем гармоническая. Поэтому имеется определенная возможность для распознавания ЧМ- и ФМ-сигналов, используя в качестве признака распознавания деформацию модулирующей функции на выходе частотного 18 и фазового 25 детекторов.

Пусть разложение модулирующей функции в ряд Фурье на некотором временном интервале имеет следующий вид:

где Ui, Ωi, φi - амплитуда, частота и начальная фаза i-ой спектральной составляющей.

Известно, что на выходе фазового детектора 25 будет выделяться фаза колебания:

а на выходе частотного детектора 18 получается дифференциал от фазы:

Рассмотрим случай, когда тип детектора соответствуют виду угловой модуляции принимаемого сигнала.

При ЧМ ω(t)=M(t), ϕ(t)=0 и на выходе частотного детектора 18 будем иметь:

При ФМ ω(t)=0, ϕ(t)=М(t) и на выходе фазового детектора 25 будем иметь:

Если тип детектора не соответствует виду угловой модуляции, то возможны следующие ситуации.

Пусть на вход фазового детектора 25 поступает ЧМ-сигнал. При этом ω(t)=M(t), ϕ(t)=0 и на выходе фазового детектора 25 будем иметь:

Анализируя формулу (11), видим, что спектр ЧМ-колебания после фазового детектора 25 претерпевает деформацию. С увеличением номера спектральной составляющей амплитуда ее будет уменьшаться, т.е. отношение амплитуд спектральных составляющих, взятых в начале частотной оси, к амплитуде спектральных составляющих, взятых на некотором расстоянии от начала оси, будет больше 1.

Теперь рассмотрим похождение ФМ-колебания через частотный детектор 18.

При ФМ ω(t)=0, ϕ(t)=М(t) и на выходе частотного детектора 18 будем иметь:

Из формулы (12) видно, что спектр ФМ-колебания на выходе частотного детектора 18 также претерпевает деформацию. С увеличением номера спектральной составляющей амплитуда ее будет увеличиваться, т.е. отношение амплитуд спектральных составляющих, взятых в начале частотной оси, к амплитудам спектральных составляющих, взятых на некотором расстоянии от начала оси, будет меньше 1.

Принимаемый УМ-сигнал с выхода усилителя 4 высокой частоты через открытые ключи 12 и 24 поступает на входы частотного 18 и фазового 25 детекторов. Фильтры 19 и 26 нижних частот выделяют спектральные составляющие, расположенные в начале частотной оси. Фильтры 27 и 32 верхних частот выделяют спектральные составляющие, расположенные на некотором расстоянии от начала оси. Амплитудные детекторы 28, 29, 31 и 33 выделяют огибающие соответствующих спектральных составляющих. Блоки 30 и 34 сравнения определяют отношение амплитуд спектральных составляющих, взятых в начале частотной оси, к амплитудам спектральных составляющих, взятых на некотором расстоянии от начала частотной оси, на выходах фазового 25 и частотного 18 детекторов. В зависимости от указанного отношения принимается решение о виде угловой (частотная или фазовая) модуляции принимаемого сигнала.

Если на выходе фазового детектора 25 указанное отношение больше единицы, а на выходе частотного детектора 18 указанное отношение приблизительно равно единице, то принимаемый сигнал имеет частотную модуляцию.

Если на выходе частотного детектора 18 отношение амплитуд спектральных составляющих, взятых в начале частотной оси, к амплитудам спектральных составляющих, взятых на некотором расстоянии от начала частотной оси, будет меньше единицы, а на выходе фазового детектора 25 указанное отношение приблизительно равно единице, то принимаемый сигнал имеет фазовую модуляцию.

При манипуляции высокочастотного колебания по амплитуде, частоте и фазе модулирующей функцией M(t) (двухполярными посылками постоянного тока), манипулированные сигналы будут иметь вид, показанный на фиг.2.

Для распознавания указанных сигналов можно использовать спектральный метод, который основан на особенностях амплитудных и фазовых спектров амплитудно-манипулированных (АМн), частотно-манипулированных (ЧМн) и фазоманипулированных (ФМн) сигналов, получаемых в реальном масштабе времени. При этом в качестве признаков распознавания указанных сигналов используются симметрия амплитудного спектра и наличие линейного фазового члена. При частотной манипуляции амплитудный спектр не обладает свойством симметрии, а при амплитудной и фазовой манипуляции он является четно-симметричной функцией частоты. Обозначив данный признак через α, получим

αАМн=0, αЧМн=0, αФМн=0.

По данному признаку можно различить два класса сигналов:

ЧМн-сигналы и АМн (ФМн) сигналы.

Фазовые спектры АМн- и ЧМн-сигналов характеризуются наличием линейного члена.

Обозначив данный признак через β, получим

βАМн=0, βЧМн=1, βФМн=0.

По этому признаку можно отличить АМн-, ЧМн-сигналы от ФМн-сигнала.

Следует отметить, что в пространстве указанных признаков рассматриваемые классы сигналов не пересекаются, т.е. их распознавание можно производить с высокой достоверностью (фиг.3).

Принимаемый манипулированный сигнал с выхода усилителя 4 высокой частоты через открытый ключ 12 поступает на вход анализатора 35 комплексного спектра, а затем на входы анализатора 36 линейного члена, фазового члена и анализатора 37 симметрии амплитудного спектра. Измеренные признаки распознавания поступают на входы преобразователей 38 и 39 аналог-код, где они преобразуются в цифровые коды, которые поступают в блок логической обработки, состоящий из элементов совпадения И 40, 42, 44 и инверторов 41 и 43. Появление напряжений на выходах элементов совпадения И 40, 42, 44 свидетельствует о частотной, амплитудной и фазовой манипуляции соответственно.

Если на вход панорамного приемника поступает сложный сигнал с двухкратной фазовой манипуляцией

uc(t)=Uc·cos[ωct+φk(t)+φc], 0≤t≤Tc,

где φk(t)={0, π} - манипулируемая составляющая фазы, отражающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), причем φk(t)=const при kτэ<t<(k+1)τэ и может изменяться скачком при t=kτэ, т.е. на границах между элементарными посылками (k=1, 2, …, N);

τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Tc(Tc=N·τэ),

то логическая единица образуется на выходе элемента совпадения И 44. Эта единица преобразуется в преобразователе 45 код-напряжение в постоянное напряжение, которое поступает на управляющий вход ключа 46 и открывает его. В исходном состоянии ключ 46 всегда закрыт.

При этом принимаемый сигнал Uc(t) с выхода усилителя 4 высокой частоты через открытый ключ 12 и 46 поступает на входы трех каналов обработки.

В этом случае на выходе умножителей фазы на два 47, четыре 48 и восемь 49 образуются следующие гармонические колебания соответственно:

так как 2φk(t)={0,2π}, 4φk(t)={0,4π}, 8φk(t)={0,8π}, то в указанных колебаниях манипуляция фазы уже отсутствует.

Ширина спектра второй Δf2, четвертой Δf4 и восьмой Δf8 гармоник сигнала определяется его длительностью (, , ), тогда как ширина спектра ФМн-сигнала определяется длительностью элементарных посылок , т.е. ширина спектра указанных гармоник сигнала в N раз меньше ширины сигнала входного сигнала:

Ширина спектра Δfc входного ФМн-сигнала Uc(t) измеряется с помощью анализатора спектра 21. Ширина спектра второй Δf2, четвертой Δf4 и восьмой Δf8 гармоник сигнала измеряется анализаторами спектра 50, 51 и 52 соответственно. Напряжения U2, U4, U8, пропорциональные Δf2, Δf4, Δf8 соответственно, с выходов анализаторов спектра 50, 51 и 52 поступают на первые входы блоков 53, 54 и 55 сравнения, на вторые входы которых подается напряжение Uc с выхода анализатора спектра 21, пропорционально U1. Так как U1>>U2, U1>>U4, U1>>U8, то на выходе блоков 53, 54 и 55 сравнения образуются положительные напряжения, которые через соответствующие преобразователи аналог-код 56, 57 и 58 поступают на первые входы элементов совпадения И 61, 62 и 63. На второй вход элемента совпадения И 61 подается логическая единица с выхода второго преобразователя аналог-код 57. Второй вход элемента совпадения И 62 через инвертор 59 соединен с выходом преобразователя аналог-код 56 первого канала обработки. Второй вход элемента совпадения И 63 через инвертор 40 соединен с выходом преобразователя аналог-код 57 второго канала обработки.

Следовательно, при двухкратной фазовой манипуляции [φk(t)=[0, π}] логическая единица образуется только на выходе элемента совпадения И 61.

Если на вход панорамного приемника поступает сигнал с четырехкратной фазовой манипуляцией ФМн-4 , то на выходе умножителя 47 фазы на два образуется ФМн-2 сигнал [2φk(t)={0, π, 2π, 3π}], а на выходах умножителей фазы на четыре 48 и восемь 49 образуются гармонические колебания U2(t) и U3(t) соответственно, т.е. во втором и третьем каналах осуществляется свертка спектра принимаемого ФМн-сигнала. В этом случае в блоке 53 сравнения отношение U1/U2≈1 и на его выходе не формируется напряжение, т.е. образуется логический нуль. Логическая единица формируется на выходе элемента совпадения И 62, что является признаком распознавания ФМн-4 сигнала.

Если на вход панорамного приемника поступает сигнал с восьмикратной фазовой манипуляцией ФМн-8 , то свертка его спектра осуществляется только на выходе умножителя фазы на восемь 49. При этом единичное напряжение появляется только на выходе элемента совпадения И 63.

Таким образом, предлагаемое устройство по сравнению с базовым объектом обеспечивает определение кратности фазовой манипуляции принимаемого сигнала. Тем самым функциональные возможности устройства расширены.

Устройство для определения частоты, вида модуляции и манипуляции принимаемых сигналов, содержащее последовательно включенные приемную антенну, входную цепь, усилитель высокой частоты, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, детектор, видеоусилитель и вертикально отклоняющие пластины электронно-лучевой трубки, горизонтально отклоняющие пластины которой соединены с выходом устройства формирования частотной развертки, управляющие входы входной цепи, усилителя высокой частоты, гетеродина и устройства формирования частотной развертки соединены с соответствующими выходами блока поиска, в качестве которого может быть использован генератор пилообразного напряжения или электрический мотор, последовательно подключенные к выходу усилителя высокой частоты, первый ключ, второй вход которого соединен с выходом детектора, первый амплитудный детектор, первый фильтр верхних частот, первый квадратор, первый делитель напряжений, второй вход которого через первый фильтр нижних частот соединен с выходом первого амплитудного детектора, и первый блок сравнения, два выхода которого являются первым и вторым выходами устройства, последовательно подключенные к выходу первого ключа частотный детектор, второй фильтр нижних частот, второй квадратор и второй делитель напряжений, второй вход которого через первый анализатор спектра соединен с выходом первого ключа, а выход подключен ко второму входу первого блока сравнения, последовательно подключенные к выходу первого ключа второй ключ, второй вход которого соединен со вторым выходом устройства, фазовый детектор, третий фильтр нижних частот, второй амплитудный детектор и второй блок сравнения, второй вход которого через последовательно включенные второй фильтр верхних частот и третий амплитудный детектор соединен с выходом фазового детектора, а два выхода являются третьим и четвертым выходами устройства, последовательно подключенные к выходу частотного детектора третий фильтр верхних частот, пятый амплитудный детектор и третий блок сравнения, второй вход которого через четвертый амплитудный детектор соединен с выходом второго фильтра нижних частот, а два выхода являются пятым и шестым выходами устройства, последовательно подключенные к выходу первого ключа анализатор комплексного спектра, анализатор линейного члена фазового спектра, первый преобразователь аналог-код и первый элемент совпадения И, второй вход которого через последовательно включенные анализатор симметрии амплитудного спектра и второй преобразователь аналог-код соединен со вторым выходом анализатора комплексного спектра, а выход является седьмым выходом устройства, последовательно подключенные к выходу второго преобразователя аналог-код первый инвертор и второй элемент совпадения И, второй вход которого соединен с выходом первого преобразователя аналог-код, а выход является восьмым выходом устройства, последовательно подключенные к выходу первого преобразователя аналог-код второй инвертор и третий элемент совпадения И, второй вход которого соединен с выходом первого инвертора, а выход является девятым выходом устройства, отличающееся тем, что оно снабжено преобразователем код-напряжение, третьим ключом, третьим и четвертым инверторами и тремя каналами обработки, каждый из которых состоит из последовательно включенных умножителя фазы, анализатора спектра, блока сравнения, второй вход которого соединен с выходом первого анализатора спектра, преобразователя аналог-код и элемента совпадения И, причем к девятому выходу устройства последовательно подключены преобразователь код-напряжение, третий ключ, второй вход которого соединен с выходом первого ключа и три канала обработки, второй вход элемента совпадения И первого канала обработки соединен с выходом преобразователя аналог-код второго канала обработки, а выход является десятым выходом устройства, второй вход элемента совпадения И второго канала обработки через третий инвертор соединен с выходом преобразователя аналог-код первого канала обработки, а выход является одиннадцатым выходом устройства, второй вход элемента совпадения И третьего канала обработки соединен через четвертый инвертор с выходом преобразователя аналог-код второго канала обработки, а выход является двенадцатым выходом устройства, в первом канале обработки фаза умножается в два раза, во втором - в четыре раза и в третьем - в восемь раз.



 

Похожие патенты:

Изобретение относится к области систем обработки информации и измерительной техники и может быть использовано для определения спектрального состава периодического многочастотного сигнала, содержащего интергармоники и заданного цифровыми отсчетами.

Изобретение относится к области радиотехники и может быть использовано в спектроанализаторах и устройствах обнаружения детерминированных сигналов с применением согласованной фильтрации последних.

Изобретение относится к области техники измерений и предназначено для измерения частотных (фазовых) и амплитудных флуктуаций, создаваемых проходными высокочастотными устройствами, преобразующими и не преобразующими частоты входных колебаний, включая устройства СВЧ и оптического диапазона.

Изобретение относится к измерительной технике и может быть использовано при определении параметров радиоэлектронного средства с псевдослучайной перестройкой равноприоритетных рабочих частот - потенциального объекта радиоподавления.

Изобретение относится к области радиотехники. .

Изобретение относится к радиоизмерительной технике и радиосвязи и может быть использовано для определения параметров радиосигналов. .

Изобретение относится к электронике для измерения характеристик высокоскоростных сигналов, которые применяются в цифровых регистраторах быстропротекающих процессов и радиолокационных приемниках.

Изобретение относится к технике связи и может быть применено для измерения и контроля параметров каналов передачи данных (ПД), а также при решении задач быстрой инициализации эхо-компенсаторов высокоскоростных дуплексных модемов.

Изобретение относится к технике связи и может использоваться для измерения частоты синусоидальных сигналов в информационно-измерительных устройствах

Изобретение относится к измерительной технике и может быть использовано при дискретном гармоническом анализе полигармонических сигналов, в том числе характеризующихся быстрыми колебаниями основной частоты

Изобретение относится к области обработки и распознавания радиосигналов и может быть использовано в радиотехнических устройствах для обнаружения и распознавания амплитудно-модулированных (AM), амплитудно-манипулированных (АМн), частотно-модулированных (ЧМ), частотно-манипулированных (ЧМн), фазомодулированных (ФМ) и фазоманипулированных (ФМн) радиосигналов

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения среднего значения частоты периодических сигналов

Изобретение относится к цифровой обработке сигналов и измерительной техники

Изобретение относится к области радиоэлектроники и может быть использовано для определения несущей частоты и вида модуляции сигналов, принимаемых в заданном диапазоне частот

Изобретение относится к области техники измерений и предназначено для измерения амплитудных, частотных (фазовых) флуктуаций и комплексного коэффициента корреляции этих флуктуаций, создаваемых проходными высокочастотными устройствами

Изобретение относится к области техники измерений и предназначено для измерения амплитудных, частотных (фазовых) флуктуаций и комплексного коэффициента корреляции этих флуктуаций, создаваемых проходными высокочастотными устройствами
Наверх