Способ и устройство для определения природы подземных резервуаров

Изобретение относится к геофизике и может быть использовано для обнаружения подземного резервуара и определения его природы. Сущность: электромагнитное поле и сейсмическое воздействие прикладывают из одной и той же точки. Обнаруживают ответные сигналы с использованием соответствующих приемников, расположенных во второй точке, удаленной от первой. По результатам анализа ответного сейсмического сигнала определяют границы подземного пласта. По результатам анализа ответного сигнала электромагнитного волнового поля определяют положение резервуара. Технический результат - повышение достоверности и упрощение способа. 2 н. и 22 з.п. ф-лы.

 

Область техники, к которой относится изобретение

Данное изобретение относится к способу и устройству для обнаружения и определения природы подводных и подземных резервуаров. Изобретение, в частности, предназначено для определения, содержит ли резервуар углеводороды или воду, а также для обнаружения резервуаров с конкретными характеристиками.

Уровень техники

В настоящее время наиболее широко используемой технологией для геологической разведки, в частности, в подводных условиях являются сейсмические способы. Эти сейсмические технологии способны выявлять природу подводных пластов с некоторой точностью. Однако хотя сейсмическая разведка может выявлять местоположение и форму потенциального резервуара, она обычно не может определить его природу.

Решением является бурение скважины. Однако стоимость бурения разведочной скважины составляет порядка 25 миллионов фунтов, что при вероятности успеха, примерно, 1 к 10 является очень дорогим делом.

Раскрытие изобретения

Задачей данного изобретения является создание системы для обнаружения подводного резервуара и для определения его природы с большой достоверностью и без необходимости бурения скважины.

Было установлено, что хотя сейсмические свойства заполненного углеводородами пласта и заполненного водой пласта отличаются незначительно, их электромагнитные сопротивления различны. Таким образом, посредством использования электромагнитного способа разведки можно использовать эти различия и значительно повысить вероятность предсказания природы резервуара.

Таким образом, способ и устройство, реализующие эти принципы, образуют основу одновременно находящейся на рассмотрении заявки на патент Великобритании №0002422.4 тех же заявителей.

Указанная заявка относится к способу определения природы подземного резервуара, приблизительная геометрия и местоположение которого известны. Способ содержит приложение изменяющегося во времени электромагнитного поля к пласту, содержащему резервуар; обнаружение ответного электромагнитного сигнала; поиск в ответном сигнале волнового поля составляющей, относящейся к преломленной углеводородным слоем волне; и определение содержания резервуара на основе наличия или отсутствия составляющей волны, преломленной углеводородным слоем.

Указанная заявка также относится к способу поиска содержащего углеводороды подземного резервуара, который содержит приложение изменяющегося во времени электромагнитного поля к подземному пласту; обнаружение ответного сигнала электромагнитного волнового поля; поиск в ответном волновом сигнале поля составляющей, представляющей преломленную волну; и определение наличия резервуара и/или распознавания природы любого идентифицированного резервуара на основе наличия или отсутствия составляющей волны, преломленной углеводородным слоем.

Кроме того, указанная заявка относится к устройству для определения природы подземного резервуара, приблизительная геометрия и местоположение которого известны, или для поиска содержащего углеводороды подземного резервуара, при этом устройство содержит средства для приложения изменяющегося во времени электромагнитного поля к подземному пласту, содержащему резервуар; средства для обнаружения ответного сигнала электромагнитного поля; и средства для поиска в ответном сигнале составляющей, относящейся к преломленной волне, что позволяет определять присутствие и/или природу резервуара.

Преломленная волна ведет себя по-разному в зависимости от природы пласта, в котором она распространяется. В частности, потери при распространении в углеводородном пласте намного ниже, чем в пласте, несущем воду, в то время как скорость распространения намного выше. Таким образом, если присутствует несущий нефть резервуар и к нему прикладывается электромагнитное поле, то можно обнаружить сильную и быстро распространяющуюся преломленную волну. Это может указывать на присутствие резервуара или его природу, если его наличие уже известно.

Технологии электромагнитной разведки сами по себе известны. Однако они не используются широко на практике. Обычно представляющие интерес резервуары находятся на глубине около 1 км или более под дном моря. Для выполнения электромагнитной разведки в этих условиях в качестве автономной технологии со сколь-нибудь разумным разрешением требуется применение коротких длин волн. К сожалению, такие короткие волны имеют очень сильное затухание. Длинные же волны не обеспечивают достаточного разрешения.

Задачей данного изобретения является создание способа и устройства для надежного определения местоположения и идентификации подводных резервуаров, в частности углеводородных резервуаров, при пониженной стоимости и уменьшенных рабочих требованиях.

Согласно одному аспекту данного изобретения предложенный способ создания отчета о разведке подземного пласта содержит развертывание передатчика электромагнитного поля; развертывание сейсмического источника по существу в том же месте, что и передатчика электромагнитного поля; развертывание приемника электромагнитного поля, удаленного на заданном расстоянии от передатчика; развертывание сейсмического приемника по существу в том же месте, что и приемника электромагнитного поля; приложение электромагнитного поля с использованием передатчика электромагнитного поля; обнаружение ответного сигнала электромагнитного поля с использованием приемника электромагнитного поля; приложение сейсмического воздействия к пласту с использованием сейсмического источника по существу в том же месте, что и передатчика электромагнитного поля; обнаружение сейсмического ответного сигнала с использованием сейсмического приемника по существу в том же месте, что и приемника электромагнитного поля; анализ ответного сигнала электромагнитного поля; анализ ответного сейсмического сигнала и согласовывание двух ответных сигналов с целью создания отчета о присутствии и природе слоя.

Способ, предпочтительно, включает извлечение и использование информации о фазе и/или амплитуде ответных сигналов. Способ предпочтительно включает идентификацию составляющей преломленной волны ответного сигнала электромагнитного поля, идентификацию составляющей преломленной волны сейсмического ответного сигнала и использование двух компонент преломленных волн для создания отчета о разведке. Предпочтительно используется информация о фазе и/или амплитуде двух компонент преломленных волн.

Согласно другому аспекту изобретения предложен способ создания отчета о разведке подземного пласта с использованием ответного сигнала электромагнитного поля от приложенного электромагнитного поля и сейсмического ответного сигнала от приложенного сейсмического воздействия, при этом способ содержит идентификацию компонента преломленной волны ответного сигнала электромагнитного поля; идентификацию составляющей преломленной волны сейсмического ответного сигнала; и использование двух составляющих преломленных волн для создания отчета о присутствии и природе пласта.

В этом случае снова предпочтительно используют информацию о фазе и/или амплитуде двух составляющих преломленных волн. Способ, предпочтительно, включает стадии развертывания передатчика электромагнитного поля; развертывания сейсмического источника; развертывания приемника электромагнитного поля на заданном расстоянии, удаленном от передатчика электромагнитного поля; развертывания сейсмического приемника на заданном расстоянии от сейсмического источника; приложения электромагнитного поля к пласту с использованием передатчика электромагнитного поля; обнаружения ответного сигнала электромагнитного поля с использованием приемника электромагнитного поля; приложения сейсмического воздействия к пласту с использованием сейсмического источника; обнаружение сейсмического ответного сигнала с использованием сейсмического приемника.

Передатчик электромагнитного поля, сейсмический источник и два приемника, предпочтительно, расположены в одной плоскости. Расстояние между двумя приемниками, предпочтительно, составляет 25 м или меньше, предпочтительно 5 м или меньше, а расстояние между передатчиком электромагнитного поля и сейсмическим источником, предпочтительно, составляет ≤0,01 величины расстояния между передатчиком электромагнитного поля и приемником электромагнитного поля. Передатчик электромагнитного поля и сейсмический источник, предпочтительно, имеют, по существу, одинаковое местоположение, и приемник электромагнитного поля и сейсмический приемник имеют, по существу, одинаковое местоположение.

Передатчик электромагнитного поля, предпочтительно, содержит электрическую дипольную антенну, и приемник электромагнитного поля содержит электрическую дипольную антенну.

Хотя более длинные волны, применяемые в электромагнитной технологии, не могут обеспечивать достаточной информации для точного указания границ различных пластов, их можно использовать для определения природы конкретного идентифицированного резервуара, если этот резервуар имеет значительно отличающиеся электромагнитные характеристики. Высокого разрешения не требуется, так что можно применять более длинные волны, которые не испытывают чрезмерного затухания.

С помощью сейсмических технологий разведки можно обнаруживать границы подземного пласта с определенной точностью, но они не обеспечивают идентификацию природы обнаруженного пласта. Таким образом, за счет использования обеих технологий можно комбинировать результаты и идентифицировать резервуары, потенциально несущие углеводороды с высокой степенью достоверности.

Электромагнитные и сейсмические волны подчиняются сходным основным волновым уравнениям. Таким образом, в обоих случаях одна и та же базовая теория дает ответный гармонический волновой сигнал в зависимости от времени для слоя с равномерным фоном (покрывающим слоем). Основное отличие заключается в том, что в случае электромагнитной волны имеется комплексное волновое число (постоянная распространения), обуславливающее затухание и дисперсию (т.е. искажение импульса во временной области).

Обычно учитываются три составляющих результирующего сигнала, которые соответствуют распространению по различным путям между источником и приемником: прямой сигнал, отраженный сигнал и преломленный сигнал. Преломленный сигнал вызывается утечкой волноводного режима распространения, возбуждаемого в слое, и в случае бесконечно толстого слоя он преобразуется в горизонтальную волну или головную волну, которая распространяется вдоль верхней границы раздела, но внутри слоя.

В случае электромагнитных волн преломленная волна сильно возбуждается лишь при расположении дипольных антенн передатчика и приемника на одной линии. В качестве функции расстояния как задержка фазы, так и экспоненциальное демпфирование этой волны зависят лишь от свойств слоя, т.е. толщины слоя и его различия в удельном электрическом сопротивлении с покрывающим слоем. В этом случае прямая волна является довольно слабой, и в покрывающем слое с низким удельным сопротивлением как прямая волна, так и отраженная волна сильно затухают на больших дистанциях. При параллельном или поперечном расположении дипольных антенн имеется более сильная прямая волна и более слабая преломленная волна, так что основной вклад приходится на прямую и отраженные волны.

Как фаза, так и амплитуда преломленной волны зависят от толщины и относительного удельного электрического сопротивления слоя, и обе эти зависимости выражаются простыми математическими формулами, которые можно использовать при измерениях. Однако амплитуда имеет дополнительную зависимость от расстояния, вызванную геометрией распространения волны в слое. Поэтому измерения фазы, комбинированные с измерениями амплитуды, дают максимальную информацию о природе слоя. Дополнительную информацию можно получить посредством записи на различных частотах и использования известной зависимости фазы и амплитуды от частоты преломленной волны.

Для сейсмических волн типа Р ситуация, в целом, аналогична электромагнитным волнам и антеннам поперечной конфигурации: вклад вносят в основном прямая и отраженная волны. Это обычно имеет место, если слой содержит газообразные или жидкие углеводороды. Однако при твердом материале слоя могут происходить преобразования режима на границах раздела (например, из волн типа Р в волны типа S и обратно), что приводит, например, к тому, что волны типа Р из сейсмического источника могут возбуждать в слое режим волноводного распространения с утечкой волны типа S. Затем эта волна может снова преломляться обратно в покрывающий слой в виде волны типа Р. Эта ситуация аналогична возбуждению преломленной волны с расположенными на одной линии антеннами в случае электромагнитных волн; основное различие состоит в том, что различие скоростей сейсмических волн, а не различие удельной проводимости, определяет задержку фазы (и связанное с ней время прохождения) преломленной сейсмической волны. Поэтому более надежное определение природы подземного резервуара можно получать посредством комбинирования сейсмического ответного сигнала и электромагнитного ответного сигнала.

Также, как в случае электромагнитных волн, необходимы большие дистанции для записи преломленных сейсмических волн. Таким образом, можно удобно комбинировать две технологии в общей разведке, в которой электромагнитные и сейсмические записи выполняют одновременно. Если электромагнитная приемная антенна находится в контакте с дном моря, то ее можно комбинировать с записывающими сейсмическими системами 4С, которые способны принимать как волны типа Р, так и волны типа S.

Приемная антенна и сейсмический приемник, предпочтительно, установлены на одну и ту же структуру, например, в пределах 5-25 секунд друг от друга, и электромагнитное поле и сейсмическое воздействие прикладывают одновременно. В качестве альтернативного решения электромагнитное поле и сейсмическое воздействие прикладывают последовательно с небольшим интервалом, например, в 5 - 25 секунд.

В предпочтительной системе ответный сигнал электромагнитного поля и/или ответный сейсмический сигнал анализируют для идентификации соответствующих составляющих преломленной волны. Затем используют две составляющие преломленной волны для определения присутствия или природы пласта. Система, предпочтительно, дополнительно содержит информацию о фазе и/или амплитуде ответных сигналов, более предпочтительно, ответных сигналов преломленной волны. Предпочтительно идентифицируют отраженную волну в сейсмическом ответном сигнале и используют составляющие отраженной волны для идентификации подземного пласта.

Дополнительно к этому способ может включать развертывание магнитного приемника в том же месте, что и других приемников; обнаружение ответного сигнала магнитного поля и использование ответного сигнала магнитного поля в комбинации с ответным сигналом электромагнитного поля и сейсмическим ответным сигналом. Также, как в случае электрического поля, ответный сигнал магнитного поля вызывается как передачей электромагнитного сигнала, так и магнитотеллурического сигнала, который всегда присутствует в виде шумового фона.

Удельное электрическое сопротивление морской воды составляет около 0,3 Ом/м, а покрывающего слоя под морским дном, обычно, от 0,5 до 4 Ом/м, например около 2 Ом/м. Однако удельное электрическое сопротивление резервуара с углеводородами может составлять около 20-300 Ом/м. Поэтому удельное сопротивление несущей углеводороды формации может быть в 20 - 300 раз больше, чем несущей воду формации. Это большое различие можно использовать при применении электромагнитных технологий.

Удельное электрическое сопротивление углеводородного резервуара, обычно, намного больше окружающего материала (покрывающего слоя). Электромагнитные волны затухают намного быстрее и проходят медленнее внутри среды с низким удельным сопротивлением по сравнению со средой с высоким удельным сопротивлением. Следовательно, углеводородный резервуар меньше ослабляет электромагнитные волны по сравнению с покрывающим слоем и имеющим низкое удельное сопротивление. Кроме того, скорость электромагнитной волны внутри резервуара выше.

Таким образом, электрическая дипольная передающая антенна на дне моря или вблизи дна моря наводит электромагнитные поля и токи в морской воде и в подземном пласте. В морской воде электромагнитные поля сильно затухают за счет высокой удельной электропроводности в соленой среде, в то время как подземный пласт с меньшей удельной электропроводностью вызывает меньшее затухание. Если частота является достаточно низкой (порядка 1 Гц), то электромагнитная энергия способна глубоко проникать под землю, и глубоко залегающие геологические слои, имеющие более высокое удельное электрическое сопротивление, чем покрывающий слой (например, заполненный углеводородами резервуар), оказывают влияние на электромагнитные волны. В зависимости от угла падения и состояния поляризации электромагнитная волна, падающая на слой с высоким сопротивлением, возбуждает в слое направленную моду волны. Направленная мода распространяется горизонтально вдоль слоя и вызывает утечку энергии обратно к покрывающей поверхности и к приемникам, расположенным на морском дне. В данной заявке такая мода волны называется «преломленной волной».

Расстояние между электромагнитным источником и приемником ниже называется дистанцией. За счет того, что преломленная волна меньше затухает в несущей углеводороды формации, чем прямая волна в морской воде (или в покрывающем слое), для заданной содержащей углеводороды формации имеется критическая дистанция, при которой преломленная волна и прямая волна имеют одинаковую силу сигнала. Она может быть обычно в 2-3 раза больше наименьшего расстояния от источника или приемника до содержащей углеводороды формации. Таким образом, когда дистанция больше критической дистанции, радиальные электромагнитные волны, которые преломляются в резервуаре и направляются в нем, вносят главный вклад в принимаемый сигнал. Принятый сигнал имеет большую величину и приходит раньше (т.е. имеет меньший фазовый сдвиг) по сравнению со случаем, когда резервуар с углеводородами отсутствует. Во многих случаях изменение фазы и/или изменение амплитуды, записанные на расстояниях, больших критической дистанции, можно использовать непосредственно для вычисления удельного электрического сопротивления резервуара. Кроме того, по критической дистанции и/или по величине кривой, представляющей записанный фазовый сдвиг сигнала или записанную амплитуду сигнала в виде функции дистанции между передатчиком и приемником, можно вывести глубину резервуара. Наиболее эффективная дистанция между электромагнитным передатчиком и приемником обычно больше критической дистанции. При дистанциях больше критической изменение крутизны кривой, представляющей записанный фазовый сдвиг сигнала или записанную амплитуду сигнала в виде функции расстояния между источником и приемником, может определять границы резервуара.

Дистанцию можно изменять посредством перемещения приемников или передатчика и сейсмического источника или даже обоих. В качестве альтернативного решения дистанцию можно сохранять постоянной посредством перемещения как приемника, так и передатчика сейсмического источника.

Электромагнитные и сейсмические волны подчиняются сходным основным уравнениям. Таким образом, в обоих случаях одна и та же базовая теория дает ответный гармонический волновой сигнал в зависимости от времени для слоя с равномерным фоном (покрывающим слоем). Основное отличие заключается в том, что в случае электромагнитной волны имеется комплексное волновое число (постоянная распространения), обуславливающее затухание и дисперсию (т.е. искажение импульса во временной области).

Если дистанция между электромагнитным передатчиком и электромагнитным приемником значительно, более чем в три раза превышает глубину резервуара от морского дна (т.е. толщину покрывающего слоя), то понятно, что затухание преломленной волны от резервуара может быть меньше, чем прямой волны и отраженной волны. Причиной этому является то, что путь прохождения преломленной волны по существу равен расстоянию от передатчика вниз к приемнику, т.е. толщине покрывающего слоя, плюс расстояние вдоль резервуара, плюс расстояние от резервуара вверх к приемникам, т.е. еще раз толщина покрывающего слоя.

Если в зоне электромагнитного передатчика и приемника нет резервуара с углеводородами, то обнаруженный волновой ответный сигнал состоит из прямой волны и, возможно, отраженной волны. Поэтому он сильно ослаблен и его фаза быстро изменяется с увеличением расстояния.

Однако если резервуар с углеводородами имеется, то в волновом ответном сигнале присутствуют составляющие преломленной волны и они могут преобладать. За счет более высокой фазовой скорости (скорости волны) в заполненном углеводородами пласте оказывается влияние на фазу принятого волнового ответного сигнала.

В качестве функции дистанции между источником и приемником фаза преломленной волны изменяется почти линейно и намного медленнее, чем фазы прямой и отраженной волны, поскольку прямая и отраженная волны намного сильнее затухают при увеличении расстояния, так что имеется переход от быстрого изменения фазы к медленному изменению фазы с почти постоянной крутизной, что указывает на присутствие резервуара с углеводородами. При пересечении кромки резервуара медленное изменение фазы сменяется быстрым ее изменением и сильным затуханием. Таким образом, на больших дистанциях изменение фазы от медленного, линейного к быстрому изменению, или наоборот, указывает на наличие границы резервуара с углеводородами.

Если поддерживать постоянное расстояние между передатчиком и приемником при одновременном изменении положения одного из них или обоих, то записываемое изменение фазы должно быть постоянным при постоянном удельном сопротивлении подземного пласта под и между источником и приемником. При обнаружении сдвига фазы во время перемещения передатчика и/или приемника при постоянном расстоянии это указывает на то, что один из инструментов находится вблизи границы резервуара с углеводородами.

Поляризация излучения источника определяет, сколько энергии передается в нефтеносный слой и в направлении приемника. Поэтому в качестве передатчика следует выбирать дипольную антенну. Обычно, предпочтительно выбирать антенну, для которой момент тока, т.е. произведение тока на эффективную длину, является большим. Поэтому диполь передатчика может иметь длину от 100 до 1000 м, и его можно буксировать в двух разных направлениях, которые могут быть ортогональными. Оптимальная длина диполя приемника определяется моментом тока диполя источника и толщиной покрывающего слоя.

Технологию согласно изобретению можно применять при разведке подземных резервуаров на суше, однако наиболее пригодна она для подводных, в частности, для расположенных под морским дном подземных резервуаров. Электромагнитное поле, предпочтительно, прикладывают с использованием одного или нескольких передатчиков, расположенных на поверхности земли, а обнаружение осуществляют с помощью одного или нескольких приемников, расположенных на поверхности земли. В предпочтительном варианте применения передатчик (передатчики) и/или приемник (приемники) расположены на или вблизи морского дна или дна любого другого водоема.

Передаваемое электромагнитное поле может быть импульсным, однако предпочтительной является когерентная непрерывная волна, не обязательно, со ступенчатым изменением частоты. Ее можно излучать в течение значительного периода времени, во время которого передатчик, предпочтительно, должен быть стационарным (хотя он может медленно двигаться), а генерация волны должна быть стабильной. Таким образом, поле можно генерировать в течение от 3 секунд до 60 минут, предпочтительно, от 3 секунд до 5 минут, например, около 1 минуты. Электромагнитные приемники могут быть расположены с возможностью обнаружения прямой и отраженной волн, а также преломленной волны от резервуара, а анализ может включать распознавание отличия данных фазы и амплитуды преломленной волны от соответствующих данных прямой волны.

Предпочтительно длина волны передачи должна находиться в диапазоне

0,1s≤λ≤5s,

где λ является длиной волны передачи через покрывающий слой, a s - расстоянием от морского дна до резервуара. Более предпочтительно λ составляет от 0,5s до 2s. Частота передачи может быть от 0,01 до 1 кГц, предпочтительно, от 0,1 до 20 Гц, например, 1 Гц.

Расстояние между передатчиком и приемником, предпочтительно, должно быть в диапазоне

0,5λ≤L≤10λ,

где λ является длиной волны передачи через покрывающий слой, a L - расстоянием между передатчиком и первым приемником.

Понятно, что данное изобретение можно использовать для определения местоположения, протяженности, природы и объема конкретного пласта, и можно использовать также для обнаружения изменений этих параметров за период времени, например, посредством оставления приемников (и возможно также передатчика электромагнитного поля и сейсмический источник) на месте.

Электромагнитные сигналы являются чувствительными к удельному электрическому сопротивлению подземных пластов и поэтому электромагнитные способы хорошо подходят для обнаружения слоев с высоким сопротивлением, таких как резервуары с углеводородами. Однако слои без углеводородов могут также иметь высокие удельные электрические сопротивления, например слои, состоящие из прожилок соли, базальта, кальцита или других плотных скальных пород с низкой пористостью и низким содержанием воды. Слои высокого сопротивления этого типа обычно обуславливают более высокие сейсмические скорости, чем скорости, обусловленные покрывающим слоем с низким сопротивлением, в то время как резервуары с углеводородами, имеющие высокое сопротивление, обуславливают более низкие сейсмические скорости, чем скорости, обусловленные покрывающим слоем с низким сопротивлением. Поэтому можно использовать сейсмические способы при распознавании имеющих большое сопротивление резервуаров с углеводородами и отличать от других слоев, имеющих большое сопротивление.

Резервуары с углеводородами можно отличать от других слоев с высоким сопротивлением на основе имеющихся данных сейсмического отражения при приведенной разведке. Однако более надежное различение можно получать из данных сейсмического преломления, записанных при больших дистанциях между сейсмическим источником и сейсмическим приемником. Это можно выполнять, предпочтительно, в комбинации со сбором электромагнитных данных.

Электромагнитные приемные антенны, которые расположены на морском дне, предпочтительно комбинируют с сейсмическими приемниками, которые также находятся в контакте с морским дном. Это означает, что необходима лишь одна съемка для записи как электромагнитных, так и сейсмических данных, и можно выполнять запись всех четырех сейсмических компонент 4С (трех компонент вектора смещения и, дополнительно, давления) как компонент волны Р, так и компонент волны S преломленных сейсмических сигналов.

Понятно, что отсутствие какой-либо составляющей преломленной волны в ответном сигнале электромагнитного поля или в сейсмическом ответном сигнале указывает на отсутствие формаций с отличающимся удельным электрическим сопротивлением или с отличающимися акустическими свойствами. Присутствие составляющей преломленной волны как в ответном сигнале электромагнитного поля, так и в ответном сейсмическом сигнале указывает на присутствие формации с высоким удельным электрическим сопротивлением и высокой акустической скоростью (низкой пористостью), что означает, например, базальтовый или соляной купол. Присутствие составляющей электромагнитной преломленной волны и отсутствие компонент сейсмической преломленной волны указывает на высокое удельное электрическое сопротивление вместе с низкой акустической скоростью и, следовательно, низкой пористостью, что означает наличие резервуара с углеводородами в возможно пористой скальной формации, такой как песчаник.

Таким образом, при больших дистанциях слой высокого сопротивления с углеводородами характеризуется присутствием преломленной электромагнитной волны без преломленной сейсмической волны. В противоположность этому слой высокого сопротивления без углеводородов характеризуется присутствием как преломленной электромагнитной волны, так и преломленной сейсмической волны. Посредством записи обоих типов волн в одном и том же изыскании можно обеспечивать более надежную идентификацию резервуаров с углеводородами.

Сейсмическое оборудование, включая источник и приемник, может быть обычным как по конструкции, так и по использованию.

Изобретение позволяет операторам отказаться от сложной и дорогостоящей трехмерной разведки посредством выполнения первоначальной двумерной сейсмической разведки, а затем выполнения способа согласно данному изобретению применительно к потенциально интересным зонам, вскрытым с помощью первоначальной разведки.

Данное изобретение распространяется на приемный узел, содержащий опорную конструкцию; электрическую дипольную приемную антенну, установленную на опорной конструкции; трехосный сейсмический приемник, установленный на опорной конструкции; гидрофон, установленный на опорной конструкции; и якорь, выполненный с возможностью крепления опорной конструкции к морскому дну.

Изобретение также распространяется на способ исследования подводного пласта указанным выше способом для создания отчета о разведке, а также к отчету о разведке, созданному с помощью способа согласно изобретению.

1. Способ обнаружения подземного резервуара и определения его природы, включающий: развертывание передатчика электромагнитного поля; развертывание сейсмического источника, по существу, в том же месте, что и передатчика электромагнитного поля; развертывание приемника электромагнитного поля на заданной дистанции от передатчика; развертывание сейсмического приемника, по существу, в том же месте, что и приемника электромагнитного поля; приложение электромагнитного поля к пласту с использованием передатчика электромагнитного поля; обнаружение ответного сигнала электромагнитного волнового поля с использованием приемника электромагнитного поля; приложение сейсмического действия к пласту с использованием сейсмического источника, по существу, в том же месте, что и передатчика электромагнитного поля; обнаружение сейсмического ответного сигнала с использованием сейсмического приемника, по существу, в том же месте, что и приемника электромагнитного поля; анализ ответного сейсмического сигнала, включающий выявление составляющей преломленной волны сейсмического ответного сигнала, по результатам которого определяют границы подземного пласта, и анализ ответного сигнала электромагнитного волнового поля, включающий выявление составляющей преломленной волны ответного электромагнитного сигнала, по наличию или отсутствию которой определяют содержание резервуара.

2. Способ по п.1, характеризующийся тем, что дополнительно включает определение фазы и/или амплитуды ответных сигналов.

3. Способ по п.2, характеризующийся тем, что определяют фазу и/или амплитуду двух составляющих преломленных волн.

4. Способ по любому из пп.1-3, характеризующийся тем, что передатчик электромагнитного поля содержит электрическую дипольную антенну.

5. Способ по любому из пп.1-3, характеризующийся тем, что приемник электромагнитного поля содержит электрическую дипольную антенну.

6. Способ по любому из пп.1-3, характеризующийся тем, что приемник электромагнитного поля и сейсмический приемник устанавливают на одну конструкцию.

7. Способ по любому из пп.1-3, характеризующийся тем, что электромагнитное поле и сейсмическое воздействие прикладывают одновременно.

8. Способ по любому из пп.1-3, характеризующийся тем, что электромагнитное поле и сейсмическое воздействие прикладывают последовательно с промежутком в 5-25 с.

9. Способ по любому из пп.1-3, характеризующийся тем, что дополнительно развертывают магнитный приемник, по существу, в том же местоположении, что и приемник электромагнитного поля; обнаруживают ответный сигнал магнитного поля и используют ответный сигнал магнитного поля в комбинации с ответным сигналом электромагнитного поля и сейсмическим ответным сигналом.

10. Способ по любому из пп.1-3, характеризующийся тем, что операции с передатчиком электромагнитного поля и сейсмическим источником и/или приемником электромагнитного поля и сейсмическим приемником повторяют в различных местах для нескольких электромагнитных и сейсмических воздействий.

11. Способ по любому из пп.1-3, характеризующийся тем, что операции повторяют на разных дистанциях.

12. Способ по любому из пп.1-3, характеризующийся тем, что развертывают и используют несколько приемников электромагнитного поля и/или несколько сейсмических приемников.

13. Способ по п.12, характеризующийся тем, что приемники электромагнитного поля и сейсмические приемники устанавливают на кабеле.

14. Способ по любому из пп.1-3, характеризующийся тем, что передатчик электромагнитного поля и/или сейсмический источник и/или приемник электромагнитного поля и/или сейсмический приемник располагают на морском дне или вблизи морского дна или дна любого другого водоема.

15. Способ по п.14, характеризующийся тем, что сейсмический источник располагают на поверхности водоема или вблизи нее.

16. Способ по любому из пп.1-3, характеризующийся тем, что частоту электромагнитного поля непрерывно изменяют в течение периода передачи.

17. Способ по любому из пп.1-3, характеризующийся тем, что электромагнитное поле генерируют с периодом времени от 3 с до 60 мин.

18. Способ по п.17, характеризующийся тем, что время передачи составляет от 10 с до 5 мин.

19. Способ по любому из пп.1-3, характеризующийся тем, что длину волны задают по формуле 0,1s≤λ≤10s, где λ - длина волны передачи через покрывающий слой, a s - расстояние от морского дна до резервуара.

20. Способ по любому из пп.1-3, характеризующийся тем, что дистанцию выноса между передатчиком электромагнитного поля и приемником электромагнитного поля задают по формуле: 0,5λ ≤ L10 λ, где λ - длина волны при передаче через покрывающий слой, a L - расстояние между передатчиком и приемником.

21. Способ по п.16, характеризующийся тем, что частота передачи составляет от 0,01 Гц до 1 кГц.

22. Способ по п.20, характеризующийся тем, что частота передачи составляет от 0,1 до 20 Гц.

23. Способ по любому из пп.1-3, характеризующийся тем, что посредством сейсмического приемника записывают весь поток сейсмических компонент, содержащих три составляющих вектора смещения и составляющую давления.

24. Устройство для осуществления способа по любому из пп.1-23, включающее приемный узел, содержащий опорную конструкцию, электрическую дипольную приемную антенну, установленную на опорной конструкции, трехосный сейсмический приемник, установленный на опорной конструкции, гидрофон, установленный на опорной конструкции, и якорь, выполненный с возможностью крепления опорной конструкции к морскому дну.



 

Похожие патенты:

Изобретение относится к устройствам для измерения геофизических параметров в придонной зоне морей и океанов и может быть использовано для оперативной оценки сейсмического и гидродинамического состояния исследуемых районов, а также для прогноза сейсмических и экологических последствий природного и техногенного характера.

Изобретение относится к способам обнаружения возможности наступления катастрофических явлений преимущественно на море. .

Изобретение относится к способам изучения геологических сред и позволяет изучать пространственное распределение в земле источников геофизических и геохимических полей, которыми могут являться месторождения полезных ископаемых различных типов, зоны тектонических нарушений, археологические памятники и другие подземные объекты.
Изобретение относится к способам предотвращения неконтролируемого - лавинообразного извержения вулканов и организации контролируемого транспортирования магмы для ее использования при строительстве.

Изобретение относится к геофизике и может быть использовано при поисках нефтяных и газовых месторождений. .

Изобретение относится к области разведочной геофизики. .
Изобретение относится к области добычи полезных ископаемых и предназначено для поисков природных скоплений в недрах Земли газообразных водорода и гелия. .

Изобретение относится к петрофизической оценке подземных пластов. .

Изобретение относится к нефтегазовой геологии и может быть использовано для оптимизации размещения скважин на исследуемом объекте. .

Изобретение относится к области геофизических методов разведки с использованием комбинированных способов для определения вертикальных зон напряженного-деформированного состояния среды.
Изобретение относится к области геологоразведочных работ и может быть использовано в нефтегазодобывающей промышленности при поиске залежей нефти и газа в регионах с умеренным и холодно-гумидным климатом

Изобретение относится к области геофизики и может быть использовано для определения местоположения трассы магистральных сооружений

Изобретение относится к геофизике и предназначено для генерации и отображения виртуального керна, аналогичного образцу части земной породы

Изобретение относится к нефтегазопромысловой геологии и может быть использовано для получения информации о продуктивности и контурах исследуемого участка площади бурением нескольких стволов из одной скважины

Изобретение относится к способам создания геологических моделей и может быть использовано для выбора оптимального варианта размещения скважин для добычи углеводородного сырья

Изобретение относится к области геофизики и может быть использовано для воспроизводства контура рудных залежей

Изобретение относится к способам определения параметров пласта

Изобретение относится к методам геофизических исследований земной коры
Наверх