Способ получения высокомодульного углеродного волокна

Изобретение относится к технологии получения высокомодульных углеродных волокон из полиакрилонитрильных жгутов, применяемых для производства высококачественных композитов. Согласно способу получения исходный полиакрилонитрильный жгут с числом филаментов от 3К до 24К, выполненный из сополимера с содержанием не менее 85% полиакрилонитрила, подвергают предварительной крутке до 10-20 кр/м и окисляют в воздушной среде до плотности 1,39-1,43 г/см3. Затем жгут вновь подвергают крутке до 30-60 кр/м и карбонизуют в две стадии в нейтральной среде. Первую стадию карбонизации проводят при 2100-2500°С до достижения значения модуля упругости жгута 300 ГПа, а вторую стадию - при температуре до 3000°С. Изобретение позволяет в процессе проведения операции окисления избежать эффекта «переплетения» филаментов соседних жгутов, следствием которого является травмирование отдельных элементарных волокон и образование ворса, и получить высокомодульные углеродные жгуты различной линейной плотности, имеющие максимально компактную форму и высокий модуль упругости.

 

Изобретение относится к производству углеродных волокон из полиакрилонитрильных жгутиков, в частности к производству высокомодульных углеродных жгутов, применяемых для производства высококачественных композитов. Высокое качество достигается за счет компактной формы получаемых углеродных жгутов, обеспечивающей высокое содержание углеродных волокон в композите и максимальную реализацию механических свойств композиционного материала. Получение таких углеродных волокон традиционным способом невозможно.

Известен способ получения тонких высокопрочных углеродных нитей, описанный в патенте РФ №2126855 по кл. D01F 9/22, заявл. 09.12.96, опубл. 27.02.99.

Известный способ заключается в том, что полиакрилонитрильные жгутики окисляют и подвергают карбонизации в виде лент с последующим их разделением, причем каждый жгутик состоит из 4-120 комплексных крученых нитей с углом крутки, не превышающим 2°, а после разделения лент каждый из жгутиков дополнительно разделяют на составляющие углеродных нитей с линейной плотностью, в 10-300 раз меньшей линейной плотности жгутиков.

Недостатком известного способа является его трудоемкость, связанная с необходимостью разделения лент на жгутики, а жгутиков на нити.

Известен способ получения углеродных волокнистых материалов, описанный в патенте РФ №2017869 по кл. D01F 9/22, заявл. 19.12.91, опубл. 15.04.94.

Известный способ заключается в следующем.

Тканую ленту из полиакрилонитрила с круткой не более 50 кр/м дополнительно перед окислением вытягивают на 5-120% при 181-219°С в воздушной среде, а окисление осуществляют в две стадии, сначала до плотности 1,22-1,28 г/см3 при деформации 0±15%, а затем до плотности 1,34-1,45 г/см3 при деформации 5±10%, далее производят карбонизацию и высокотемпературную обработку.

Недостатком известного способа является его сложность, обусловленная проведением окисления в две стадии.

Наиболее близким по технической сущности к заявляемому является способ получения высокомодульного углеродного волокна, описанный в патенте РФ №2220235 по кл. D01F 9/22, заявл. 23.04.01, опубл. 20.05.03 и выбранный в качестве прототипа.

Известный способ заключается в следующем.

Полиакрилонитрильную комплексную некрученую нить с линейной плотностью 250 текс окисляют в воздушной среде при температуре 180-300°С до плотности 1,40-1, 42 г/ см3 с вытяжкой 1-40%, затем нити придают крутку 15-80 кр/м, окисленную нить карбонизуют в две стадии при конечной температуре 1800-2400°С с усадкой 0, 5-20%.

Недостаток известного способа заключается в ограничении верхнего предела температуры карбонизации 2400°С, что не позволяет получать углеродные волокна с модулем выше 300-350 ГПа в условиях реализации усадки на данной стадии 0,5-20%. Недостатком является и то, что в качестве исходного сырья берется только комплексная нить линейной плотности 250 текс, что ограничивает область применения получаемых углеродных волокон в промышленности, поскольку во многих отраслях промышленности требуются углеродные жгуты различной линейной плотности.

Задачей является получение высокомодульных углеродных жгутов различной линейной плотности, имеющих максимально компактную форму и высокий модуль упругости.

Поставленная цель достигается тем, что в способе получения высокомодульного углеродного волокна, заключающемся в том, что полиакрилонитрильное исходное сырье окисляют в воздушной среде до плотности 1,39-1,43 г/куб. см, затем подвергают его крутке до 30-60 кр/м, далее карбонизуют в две стадии в нейтральной среде, согласно изобретению в качестве исходного сырья используют полиакрилонитрильный жгут с количеством филаментов от 3К до 24К, содержащий в качестве сополимера не менее 85% полиакрилонитрила, который перед окислением подвергают предварительной крутке до 10-20 кр/м, первую стадию карбонизации проводят при температуре 2100-2500°С, а вторую стадию - при температуре до 3000°С, при этом критерием окончания первой карбонизации служит достижение значения модуля упругости жгута 300 ГПа.

Использование в качестве исходного сырья жгутов различной линейной плотности дает возможность расширить область применения получаемых углеродных волокон, а операция предварительной крутки исходной полиакрилонитрильной ровницы до величины 10-20 кр/м позволяет в процессе проведения операции окисления избежать эффекта «переплетения» филаментов соседних жгутов, следствием которого является травмирование отдельных элементарных волокон и образование ворса, т.е. повысить качество получаемого углеродного волокна.

Применение двухстадийной подкрутки исходного и окисленного сырья является непременным условием при реализации данного способа и является его отличительной особенностью.

Подкрутка жгута после операции окисления до величины 30-60 кр/м необходима для придания углеродному жгуту компактной формы (требование потребителей высокомодульного углеродного жгута) и продиктована условиями переработки на последней стадии получения высокомодульного волокна. Подкрутка жгута сразу до величины 30-60 кр/м до операции окисления невозможна, так как на этой операции необходимо обеспечить эффективный отвод тепла и летучих от волокна в процессе экзотермических реакций. В противном случае наблюдается развитие неуправляемого экзотермического процесса, плавление незациклизованных сегментов ПАН-волокна и его последующий обрыв.

Достижение в процессе первой стадии карбонизации модуля упругости жгута не менее 300 ГПа является неотъемлемым условием проведения второй стадии карбонизации, в процессе которой достигается повышение модуля упругости жгута не менее 450 ГПа. Величина модуля упругости углеродного волокна может служить косвенной характеристикой структурных преобразований, происходящих в углеродном волокне в процессе высокотемпературной обработки. Рост модуля упругости связан с ростом размером кристаллитов в углеродном волокне и их совершенствованием. По достижении модуля 300 ГПа в углеродном волокне завершается постепенное разрушение термостойких связей в наименее упорядоченных межслоевых и межкристаллитных участках волокна, и волокно приобретает высокую термостойкость. Поэтому на второй стадии карбонизации реализуется принцип кратковременного высокотемпературного воздействия (до 3000°С), в процессе которого происходит как быстрый рост размеров кристаллитов, так и рост модуля упругости углеродного волокна.

Использование двухстадийного процесса высокотемпературной обработки позволяет достичь высоких экономических показателей процесса в сравнении с длительным процессом одностадийной карбонизации и получить максимальное значение модуля упругости.

Технический результат - промышленное получение широкого ассортимента высокомодульных углеродных жгутов компактной формы, обеспечивающих максимальную реализацию упругопрочностных свойств композитов за счет высокого коэффициента наполнения.

Изобретение обладает новизной в сравнении с прототипом, отличаясь от него такими существенными признаками, как использование в качестве исходного сырья широкого ассортимента ПАН-жгутов, содержащих от 3000 до 24000 филаментов (от 3К до 24К), проведение двухстадийной крутки: предварительной крутки жгутов перед окислением в дополнение к окончательной крутке после окисления, проведение первой стадии карбонизации при температуре 2100-2500°С с критерием ее окончания - модулем упругости жгута 300 ГПа, а второй стадии при температуре до 3000°С, обеспечивающих в совокупности достижение заданного результата.

Заявителю неизвестны технические решения, обладающие указанными отличительными признаками, обеспечивающими в совокупности получение заданного результата, поэтому он считает, что заявляемый способ соответствует критерию «изобретательский уровень».

Заявляемый способ может найти широкое применение в производстве углеродных волокон из полиакрилонитрильных жгутиков, в частности в производстве высокомодульных углеродных жгутов различной линейной плотности, применяемых для производства высококачественных композитов в области машиностроения, а потому соответствует критерию «промышленная применимость».

Заявляемый способ заключается в следующем. Используемый в качестве исходного сырья полиакрилонитрильный жгут различной линейной плотности с числом филаментов от 3К до 24К (где К=1000), содержащий в качестве сополимера не менее 85% полиакрилонитрила, подвергают предварительной крутке до 10-20 кр/м, затем окисляют его в воздушной среде до плотности 1,39-1, 43 г/см3, снова подвергают его крутке до 30-60 кр/м, далее карбонизуют жгут в две стадии в нейтральной среде. При этом первую стадию карбонизации проводят при температуре 2100-2500°С, причем критерием окончания первой стадии служит достижение значения модуля упругости жгута 300 ГПа, а вторую стадию - при температуре до 3000°С.

Способ осуществляется следующим образом.

Жгут полиакрилонитрильный 12К линейной плотности 1200 текс, содержащий в качестве сополимера 93% полиакрилонитрила, 5,7% метилакрилата и 1,3% итаконовой кислоты, предварительно подкручивают до 10-20 круток/метр. Далее производят окисление подкрученного жгута в воздушной среде при температурах 180-260°С с вытяжкой 5-15% до достижения плотности 1,39-1,43 г/см3. После окисления жгут окончательно подкручивают до 30-60 кр/метр. Высокотемпературную обработку (карбонизацию) жгута проводят в инертной среде в две стадии. На первой стадии, проводимой при температурах 2100-2500°С и усадке жгута 0-5%, получают углеродное волокно с модулем упругости 300 ГПа. На последней стадии это волокно подвергают кратковременной дополнительной термообработке при температуре до 3000°С. В результате такой термообработки получается углеродный жгут с модулем упругости не менее 450 ГПа. Подкрутка жгута после окисления до величины 30-60 кр/метр позволяет после высокотемпературной обработки получить углеродный жгут предельно компактной формы с идеальным внешним видом.

В сравнении с прототипом заявляемый способ получения высокомодульного углеродного волокна позволяет получить высококачественное углеродное волокно различной линейной плотности с более высоким модулем упругости и имеющее более широкие возможности применения.

Способ получения высокомодульного углеродного волокна, заключающийся в том, что полиакрилонитрильное исходное сырье окисляют в воздушной среде до плотности 1,39-1,43 г/см3, затем подвергают его крутке до 30-60 кр/м, далее карбонизуют жгут в две стадии в нейтральной среде, отличающийся тем, что в качестве исходного сырья берут полиакрилонитрильный жгут с количеством филаментов от 3 до 24К, содержащий в качестве сополимера не менее 85% полиакрилонитрила, который перед окислением подвергают предварительной крутке до 10-20 кр/м, первую стадию карбонизации проводят при температуре 2100-2500°С, а вторую стадию - при температуре до 3000°С, при этом критерием окончания первой стадии карбонизации служит достижение значения модуля упругости жгута 300 ГПа.



 

Похожие патенты:
Изобретение относится к технологии получения высокопрочных, высокомодульных углеродных волокон. .

Изобретение относится к производству высокопрочных и высокомодульных углеродных лент, получаемых на основе полиакрилонитрильных (ПАН) нитей, и может быть применено для изготовления высокотехнологичных композитов.
Изобретение относится к технологии получения термоокисленных волокон из полиакрилонитрила и его сополимеров, которые могут быть использованы, например, в качестве полупродукта для их дальнейшей переработки в углеродные волокна.

Изобретение относится к области металлургии, в частности к способам получения углеродного непрерывного волокна с повышенным модулем упругости. .
Изобретение относится к производству углеродных волокнистых материалов на основе полиакрилонитрильных нитей, которые могут быть использованы в качестве армирующих наполнителей в композиционных материалах.

Изобретение относится к технологии получения углеродных волокон. .
Изобретение относится к производству углеродных волокон, которые могут применяться как наполнители при производстве изделий из углепластиков спортивного и промышленного назначения, в качестве исходного материала в производстве авиационных тормозных систем, наполнителей композиционных материалов, а также в качестве термостойких теплоизоляционных, фильтрующих сорбционно-активных материалов в химической, машиностроительной, авиационной промышленностях.

Изобретение относится к производству углеродных нитей из полиакрилонитрильных жгутиков и в особенности к производству тонких высокопрочных комплексных углеродных нитей, применяемых для производства высококачественных композитов.

Изобретение относится к технологии получения высокомодульных углеродных волокон из среднепрочных волокон на основе полиакрилонитрильных жгутиков и может быть использовано для производства высококачественных композитов
Изобретение относится к области получения высокопрочных углеродных волокон, преимущественно изготавливаемых из органического исходного материала (предшественника), в частности к способу стабилизации углеродсодержащего волокна и способу получения углеродного волокна

Изобретение относится к оборудованию для производства углеродных волокон, в частности к стадии низкотемпературной обработки, с использованием в качестве сырья полиакрилонитрильных ПАН волокон

Изобретение относится к производству огнестойких синтетических волокон, в частности к волокнам на основе окисленного полиакрилонитрила

Изобретение относится к технологии получения полиакрилонитрильных волокон, предназначенных для производства углеродных волокон, а также к производству углеродных волокон. Способ включает процесс прядения, первое вытягивание, высушивание, второе вытягивание. Второе вытягивание включает любой процесс из (a)-(c): (a) вытягивание на воздухе, где температура нити от точки отделения ее на горячем валке до точки первого контакта на последующем валке составляет 130°C или выше, (b) вытягивание, где расстояние от точки отделения нити на горячем валке до точки первого контакта ее на последующем валке составляет 20 см или менее, (c) вытягивание в зоне вытягивания горячей плиты, где горячая плита расположена между двумя валками, один из которых - подогревающий валок, установленный перед зоной вытягивания горячей плиты, а горячая плита расположена так, что начальная точка контакта между горячей плитой и нитью находится на расстоянии 30 см или менее от точки отделения нити на подогревающем валке, и окружная скорость подогревающего валка составляет 100 м/мин или более. 2 н. и 8 з.п. ф-лы, 8 ил., 10 табл., 57 пр.

Изобретение относится к области химии и касается способа окислительной стабилизации волокон из полиакрилонитрила(ПАН), наполненных углеродными нанотрубками. Сформированные волокна подвергают термообработке в воздушной среде при нагреве с сохранением постоянной длины. Содержание углеродных нанотрубок в волокнах составляет 0,3-0,5%. Поверхность нанотрубок содержит кислород в количестве не менее 3,5 ат.%. Окислительную стабилизацию проводят при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 110-130 минут. Изобретение обеспечивает упрощение технологии за счет уменьшения времени проведения процесса и увеличение прочностных характеристик волокон из ПАН за счет невысокого содержания углеродных нанотрубок. 1 табл., 7 пр.

Изобретение относится к производству высокопрочных углеродных жгутов, применяемых для производства высококачественных композитов и касается способа связывания волокнистого полиакрилонитрильного(ПАН) материала при проведении стадий получения из него углеродного волокна. Способ при проведении стадий, требующих непрерывности процесса при получении из него углеродного волокна или получения экспресс - образцов для отработки стадийных режимов и исследования ПАН - прекурсора на пригодность заключается в подвязке к длинномерной волокнистой ПАН-нити коротких углеродных нитей узлом косичка, состоящим их двух углеродных нитей и одной исследуемой таким образом, чтобы углеродная нить была промежуточным звеном между ПАН - нитями, длина узла не менее 100 мм с количеством переплетений 3-4 на 1 см. Изобретение обеспечивает высокое содержание углеродных волокон в композите и максимальную реализацию механических свойств композиционного материала. 5 ил.
Изобретение относится к области химии и касается способа окислительной стабилизации волокон из полиакрилонитрила (ПАН), наполненных углеродными наночастицами. Сформированные волокна подвергают термообработке в воздушной среде при нагреве. Волокна с введенными углеродными наночастицами, в качестве которых используют технический углерод в количестве 0,2 - 10%, с поверхностью, содержащей кислород в количестве не менее 4,8 атомных %, подвергают окислительной стабилизации при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут. Изобретение обеспечивает полное проведение процесса окислительной стабилизации волокон из ПАН, наполненных техническим углеродом (углеродными наночастицами), а также упрощение технологии за счет уменьшения времени проведения процесса, при одновременном снижении теплопроводности волокон, достигнутом за счет введения в волокна технического углерода, что необходимо для дальнейшего получения углеродного материала, используемого в качестве теплоизоляции печей инертной среды. 1 табл., 5 пр.

Изобретение относится к оборудованию для производства химических волокон и касается устройства для окисления полиакрилонитрильных волокон при производстве углеродных волокон. Содержит корпус 1 со съемными торцевыми стенками 5, имеющими проходные окна 6 для входа и выхода обрабатываемых волокон 4, направляющие валы 20, расположенные за пределами корпуса 1. Внутри корпуса 1 размещена камера окисления 2 с каналами 3 для перемещения волокон, объединенными в несколько температурных зон 8. Каждая температурная зона 8 связана с, по меньшей мере, одним калорифером 15 и вентилятором 12. Температурные зоны 8 выполнены изолированными друг от друга, каждая из которых снабжена ресиверной полостью 9 и аспирационной полостью 10. Каждая ресиверная полость 9 соединена с нагнетающим каналом 11 вентилятора 12 посредством перфорированной стенки 13 и с каналами 3 для перемещения волокон с одной стороны камеры 2, а каждая аспирационная полость 10 соединена с каналами 3 для перемещения волокон с другой, противоположной стороны камеры 2, и с всасывающим каналом 14 калорифера 15. Устройство содержит средства для удаления отработанных газов из камеры окисления 2, которые соединены с нагнетающим каналом 11 вентилятора 12, и средства для обогащения окисляющей среды, соединенные с всасывающим каналом 14 калорифера 15. Средства для удаления отработанных газов и средства для обогащения окисляющей среды выполнены в виде патрубков 16, 18 с дросселями 17, 19. Изобретение обеспечивает повышение эффективности термообработки ПАН-волокон за счет равнозначности температур и скоростей газовых потоков, обтекаемющих волокна в каналах каждой температурной зоны камеры окисления. 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано при производстве высокопрочных и высокомодульных углеродных волокон для высококачественных композитов. Лабораторная линия исследования и получения углеродных волокон включает два взаимосвязанных независимых агрегата: термокамеру для окислительной термостабилизации полимерного волокна до 300°С, проходную печь термообработки окисленного полимерного волокна от 800 до 3200°С и агрегат для возможного аппретирования полученного углеродного волокна. Агрегат термокамеры содержит термостатируемую герметичную термокамеру 1 с системой управления температурой, выполненную с возможностью регулирования температуры стенок и подаваемого воздуха по заданной программе в автоматическом режиме, систему 4 подачи, приема и удержания волокна, оснащённую червячной передачей, систему подачи подогретого воздуха, включающую воздушный насос 3 и калорифер 2, систему измерения натяжения волокна, содержащую устройство 6 для фиксации деформационных изменений волокна, ролик 7 и груз 8 для создания требуемой нагрузки. Агрегат проходной печи термообработки окисленного полимерного волокна содержит корпус печи термообработки, разделённой на печь предкарбонизации 9 и печь карбонизации 10, герметично соединенные друг с другом, систему фиксирования и управления температурой в печи, систему отвода и нейтрализации газов термодеструкции, систему подачи волокна, содержащую шпулярник 11 и семивальцы 13, систему приема волокна из печи, включающую семивальцы 13 и приёмно-намоточное устройство 12, систему управления скоростью вальцов, систему измерения усилия натяжения волокна и систему подачи инертного газа, включающую ёмкость 15. Агрегат для аппретирования полученного углеродного волокна содержит пропиточную ванну 19, трёхвальцы 18 и печь сушки 20. Изобретение позволяет получить углеродное волокно, изучить механизм термостабилизации, карбонизации и графитации, улучшить характеристики волокна. 3 н. и 2 з.п. ф-лы, 6 ил.
Наверх